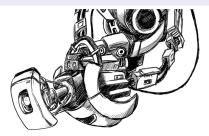
Human-Robot Systems Facing Ethical Conflicts: a Preliminary Experimental Protocol

Julien Collart, Thibault Gateau, Ève Fabre, Catherine Tessier

Onera – ISAE

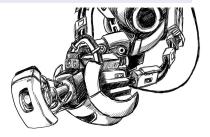
25th of January 2015



thibault.gateau@isae.fr

General Context

- Demographic explosion of autonomous agents/robots
- Embedding decision capabilities
- Bringing ethical considerations
 - Implementation of moral rules [Arkin 2008]
 - Deliberation process managing ethical conflicts [ETHICAA]



©2011-2015 ApertureIndigo

Supposing robots are equipped with moral decision capabilities

- How will human operators behave?
- Will they make their own decision?
- Will the reasoning capabilities be taken into account?
- Will they really let the ethical robot decide?

©2011-2015 ApertureIndigo

1 Protocol

- Task settings for ethical dilemna issue
- Task description
- Hypotheses
- Material
- Experiment

2 Results

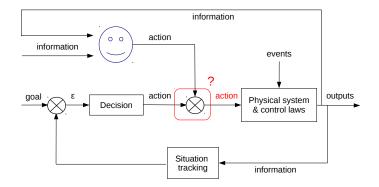
- Behavioral Results
- Physiological Results
- Discussion

3 Further works

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Settings proposal for an ethical dilemma issue

- (Human, autonomous system)
- Authority sharing issue

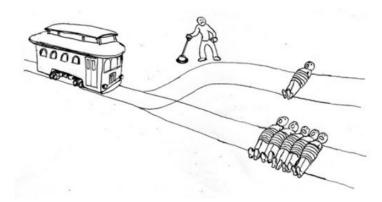

Problem

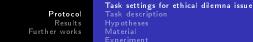
What would be an operator's behavior if an autonomous system seems to make "ethical" decisions?

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Settings proposal for an ethical dilemma issue

- (Human, autonomous system)
- Authority sharing issue

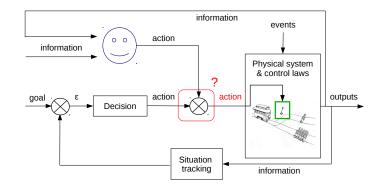

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment


Settings proposal for an ethical dilemma issue

(Human, autonomous system)

Authority sharing issue

Trolley dilemma
[Foot 1967]



Settings proposal for an ethical dilemma issue

(Human, autonomous system)

Authority sharing issue

Trolley dilemma
[Foot 1967]

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Human-Robots System

Robots

- 10 Autonomous Aerial Vehicles (AAV)
- Flying over a city for an area survey
- Default "moral" behavior implemented

Interface

ATMOSPHEr: A Tiny MAS Oriented Simulator Plateform for HMI Experiments)

https://sourceforge.isae.fr/projects/atmospher/

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Keeping the participant busy

- Task 1: Continuous management of flight parameters
- Task 2: Instructions memorisation and application

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Crash situation

Task 3: choosing an area to crash a damaged AAV
case 1: control case, no-moral-involved

thibault.gateau@isae.fr

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

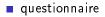
Crash situation

Task 3: choosing an area to crash a damaged AAV
case 2: moral-involved

thibault.gateau@isae.fr

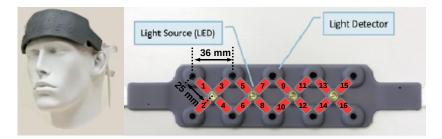
Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Hypotheses


- Prefrontal cortex activity may increase when facing an impersonal moral dilemma [Greene et al. 2004]
- 2 Decision time may be longer when facing a moral dilemma
- 3 Decision time may not depend on the sequence of events
- The participant is likely to distrust the default behavior
- 5 The answer of the participant may be consistent with his acts

oxygenation

decision time



Task settings for ethical dilemna issue Task description Hyp otheses Material Experiment

Material

fNIRS (functional near-infrared spectroscopy) sensor

- fNIR100 (Biopac®)
- Prefrontal areas involved in impersonal ethical dilemmas [Greene et al. 2004]

Task settings for ethical dilemna issue Task description Hyp otheses Material Experiment

Material

Eye-Tracker sensor

- Eye-tracker (SMI RED250)
- Participant's gaze monitoring

thibault.gateau@isae.fr

Human-Robot Systems Facing Ethical Conflicts

Task settings for ethical dilemna issue Task description Hypotheses Material Experiment

Experiment

Sequence of events

- Informed consent approval
- Training task

- Real task
- Post-experiment questionnaire

- 22 participants
- 2 groups:
 - moral-involved case first
 - no-moral-involved case first

thibault.gateau@isae.fr

Human-Robot Systems Facing Ethical Conflicts

Behavioral Results Physiological Results Discussion

Behavioral Results

Questionnaire consistency

- ✓ Hyp. 5: All participants were consistent between the experiment and the questionnaire
 - 18/22 participants chose the residential place (youngest people, more people...): utilitarian point of view

Eye-tracking results

- 19/22 participants did not see the AAV default decision
- ? Hyp. 4: The participant is likely to distrust the default behavior

thibault.gateau@isae.fr

Human-Robot Systems Facing Ethical Conflicts

Behavioral Results Physiological Results Discussion

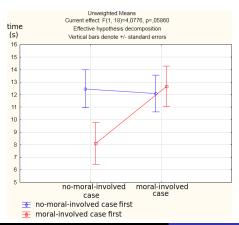
Behavioral Results

Reaction time

Only one participant let the AAV choose (using the default behavior)

The rest took part in the process (modifying or confirming AAV's choice):

• average time needed for no-moral-involved: 11.9s ($\sigma = 8.1$)


• average time needed for moral-involved: 14.1s (σ = 7.6)

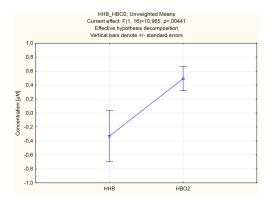
Hyp. 2: no significant statistical difference between both cases (moral-involved vs. no-moral-involved)

Behavioral Results Physiological Results Discussion

Behavioral Results

× Hyp. 3: response time is dependent from event order

Addition of a surprise effect to the moral decision process ?

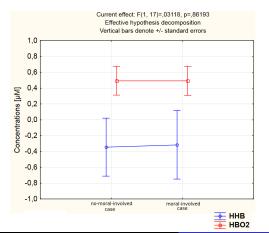

thibault.gateau@isae.fr

Human-Robot Systems Facing Ethical Conflicts

Behavioral Results Physiological Results Discussion

Physiological Results

✓ Hyp. 1? (Prefrontal cortex activity may increase)


■ Increase of $\Delta[HbO_2]$ (p < 0.01)

 Decrease of ∆[*hHb*] (*p* < 0.01)

Behavioral Results Physiological Results Discussion

Physiological Results

× Hyp. 1: cannot be confirmed

- Surprise effect?
- Sensor sensibility?
- Motor activity?

Behavioral Results Physiological Results Discussion

Discussion

- X Hyp. 1: Prefrontal cortex activity may increase when facing an impersonal moral dilemma
- Hyp. 2: Decision time may be longer when facing a moral dilemma
- Hyp. 3: Decision time may not depend on the sequence of events
 - ? Hyp. 4: The participant may be unlikely to trust the default behavior
- Hyp. 5: The answer of the participant may be consistent with his acts

Limits

- fNIRS limits (prefrontal cortex, 2Hz resolution, 16 channels)
- Bad design of the crash decision windows

New experimental protocol with EEG analysis:

- 3 types of crashes (40 repetition per condition):
 - control crash (uninhabited vs. inhabited area)
 - non-emotionnal (uninhabited vs. uninhabited area)
 - emotionnal (inhabited vs. inhabited)
- Aims:
 - elimination of surprise effect
 - evalutation of situation complexity
 - evalutation of amount of cognitive ressources required

Thank you for your attention. Any Question ?