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Special thanks to : Lenna Sjéoblom

In the early seventies, an unknown researcher at the University of Southern California working on
compression technologies scanned in the image of Lenna Sjodblom centerfold from Playboy
magazine (playmate of the month November 1972).

Since that time, images of the Playmate have been used as the industry standard for testing ways in
which pictures can be manipulated and transmitted electronically.

Over the past 25 years, no image has been more important in the history of imaging and electronic
communications.

Because of the ubiquity of her Playboy photo scan, she has been called the "first lady of the
internet". The title was given to her by Jeff Seideman in a press release he issued announcing her
appearance at the 50th annual IS&T Conference (Imaging Science & Technology).

This project is dedicated to Lenna.
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Introduction

When you look at computers and the internet, data compression is everywhere. The music we listen
to, the pictures we see, the movies, all that is data, and all that needs to be compressed in some way
or another so it "fits" into our computer memory and so it can be downloaded or sent to someone
else in a reasonable amount of time.

Regarding to our advanced master in Space Communication Systems, we had for assignment to
prepare a state of the art about data compression for fall December 2017.

The main purpose of this project is to evaluate the performance of data compression techniques on
images. This project has been split into three parts. The first part is dedicated on the state of the art
on data compression. The second part is to recreate to evaluate the performance and the complexity
of the reconstruction by transmitting compressed images (report to come after January 2018). The
third part is to evaluate the impact of using different kind of channels on the reconstructed image
(report to come after January 2018).
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1. What is data compression?

1.1. Definition

In signal processing, data compression, (A.K.A “source coding” or “bit-rate reduction”) involves
encoding information using fewer bits than the original representation. Compression data can be
either lossless or lossy.

- Lossless compression reduces bits by identifying and eliminating statistical redundancy. No
information is lost in lossless compression.

- Lossy compression reduces bits by removing unnecessary or less important information.
Some information is lost.

The process of reducing the size of a data file is often referred to as data compression. In the context
of data transmission, it is called source coding (encoding done at the source of the data before it is
stored or transmitted) in opposition to channel coding.

Compression is useful because it reduces resources required to store and transmit data.
Computational resources are consumed in the compression process and, usually, in the reversal of
the process (decompression). Data compression is subject to a space—time complexity trade-off.

Data compression has been developed since a long period (XIXe century) before being so used so
often nowadays.

1.2. Back in the past : a brief history of data compression

In 1838, Samuel Morse invented the telegraph [1]. It was a very simple way of communication
consisting of an electric battery, two buttons, two bells and a very, very, very long wire between
them. Transmitting information through this system was easy: you press the button, the bell rings on
the other side of the wire, hundreds of miles away. The guy at the other side presses his button, and
your bell rings.

Later in 1949, the Shannon Fado algorithm was introduced by Claude Shannon, and Robert Fano. It
assigns codes to symbols in a given block of data based on the probability of the symbol occurring.

Three years later, in 1952, revolution came up with a student at M.L.T. His idea: is it possible to build
the best code possible to write a given message in its shortest representation? His name was David
A. Huffman, and the set of codes he described was named after him. Huffman proved
mathematically that no code can be shorter than his in representing a message. Unfortunately for
him, other brilliant minds found better methods of coding.

In 1977, Abraham Lempel and Jacob Ziv introduced the LZ77 algorithm, which was the first to use a
dictionary to compress data. It used a dynamic dictionary called a sliding window. One year later in
1978, they published the LZ78 algorithm which includes a static dictionary. Two year later, in 1980,
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Terry Welch made changes which led to the LZW algorithm. This one became the most popular for
many general purpose compression systems and is used in modems for example.

Late in the 80’s, digital images became so popular that standards for image compression started
evolving. The TIFF file format was published in 1986 and is still used for high color-depth images.

In 1987, the low bit rate audio encoding was introduced. A german company Fraunhofer-Gesellshaft
began researching high quality, low bit-rate audio coding. They aimed to compress CD quality song
without affecting the sound (e.g. lossless data compression). The same year, CompuServe introduced
the Graphics interchange Format (GIF). It LZW used data compression to provide an image format for
their files. This replaced their RLE format, which was black and white only. GIF can also be used to
display animation.

In 1988 : first digital video coding. The first truly practical digital video coding standard was
introduced by the ITU. This formed the basis for all subsequent video coding standards.

In 1989, a revolution came in. Fraunhofer-Gesellshaft received a German patent for MP3. They now
license the patent rights to the audio compression technology. Note that MP3 is lossy compression
data. Meanwhile, the same year, another famous data compression algorithm born: Phil Katz created
the ZIP file format, which supports lossless compression and permits a number of compression
algorithms. The name ZIP means to move at fast speed.

1992 is the year of creation of another famous file format: JPEG by the Joint Photographic Experts
Group. The degree of compression can be adjusted, allowing a tradeoff between storage size and
image quality. The same year, GZIP file format was released and is based on the DEFLATE algorithm,
which is a combination of LZ77 and Huffman coding. DEFLATE was intended as a replacement for
LZW and other patented algorithms.

In 1993, Eugene Roshal, a Russian software engineer released the RAR format.

In 1996, version 1.0 of the Portable Networks Graphics (PNG) raster graphics file format was
authored by a group of computers graphics experts and enthusiasts. While GIF has a limit of 256
colors, PNG is a lossless image compression format.
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2. How does compression data work?

Answering this question is quite complicated without preliminary requirements of Shannon
information theory [2]. We suggest having a basic quick look on this topic before getting started with
the hard stuff.

2.1. Example : Morse code

In order to be practical, we will present a simple example with the Morse code to understand the
signal processing approach and the process for common data compression. We will see in details in
the other what lies behind the data compression.

We have seen up head that the Morse code was the first code to compress data information. But
Morse code as its limits. How to send a whole word? A full sentence ? A huge text with several
pages ? The solution is quite easy : you code it in bell rings, some short, some long. Each letter was
assigned a sequence of bell rings:

- one short ring and one long ring means "A",
- onelong and three short means "B",
- Andsoon...[3]

Nice, but... how does this relates to data compression? That's simple: Morse realized that some
letters occur more frequently in the English language, while others occur rarely. So to save the time
of the telegraphers, he made the more frequent letters shorter! Letter "E", for example, the most
common one, uses only one single ring (and a short one). Letters like "Q", "Y" and "Z" take four rings,
three of them long.

What does it mean? Let’s say that we only have 3 letters, "E", "Q" and "Y". "E" occurs 80% of the
time, while "Q" and "Y" occur 10% of the time. The telegrapher is a good one: he can "type" one ring
every second (ok, he is a really bad one, but this is an example). And our message has 100 letters. We
have two choices: A code in which each letter has the same size (which is 2 rings), and a code in
which letter "E" takes 1 ring, letter "Q" takes 2 and letter "Y" takes 3 (similar to what the Morse code
does). Then we have:

- 80 letters "E", 10 letters "Q" and 10 letters "Y", which means:
0 inthe first code, 200 rings, in 200 seconds.
0 inthe Morse like code, 80 rings plus 10 double rings (20 rings) plus 10 triple rings (30
rings), which amounts to 130 rings, in 130 seconds!

That’s a 35% saving in time. So there's REALLY a compression. And a good one. And better yet: No
single letter was lost. The problem is for this kind of code: “what if what | need to transmit is not
written in English, but in French?”. So in, this case, you have to study this language, figure out what
are the good proportions among letters and build a code for it. But that’s not sufficient to

Considering this example as a base for the coding, we are now going to have a look on the
information theory we need in order to study data compression algorithms models.
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2.2. Shannon information theory and source coding

The theoretical background of compression [3] is provided by information
theory (which is closely related to algorithmic information theory) for
lossless compression and rate—distortion theory for lossy compression.
These areas of study were essentially forged by Claude Shannon, who
published fundamental papers on the topic in the late 1940s and early
1950s.

The research works of Shannon have revolutionized the world of

communications for the half of the 20" century.

Theses research work allowed the rise of Internet. Without all these research work, it would be
impossible to go on holidays with your entire library in your e-reader and all the Games of Throne
episodes inside your tablet !

Shannon’s theory is dedicated to the analysis of all the technical performances of these coding
techniques (e.g.: the number of bits required for coding) doing a random modeling for the message
to code (composed of a stream of symbols).

a. Entropy

“So, how can | code a message with a minimum number of bits?” Shannon started with this sentence
and introduces a fundamental mathematical object: the entropy [4]. The entropy has been invented
by Ludwig Boltzmann in the theory of thermodynamics. His concept has been reused by Claude
Shannon in order to explain (or at least: develop!) his theory of information. Entropy of a distribution
of a source is defined by this formula:

n

HOO = = ) p(x0) (oga px)

=1

This formula means that you do the sum (for all the V symbols possible) of the frequency of
occurrence p(x;) of the symbol, times the logarithm log, p(x;) of this frequency of occurrence.
Then, a minus sign is placed in front of the sum because, as it is known, a probability is always
between 0 and 1. And as the logarithm is negative between the interval [0; 1], you have to add a
minus sign in order to respect the fact that the entropy is always a positive value.

The aim of the entropy is to quantize the incertitude on the possible symbols sequence generated by
the source V. It is possible to show that the entropy verifies the following formula:

0< HX) <log, N
(Where N is the number of symbols.)

Let’s take a simple example : let X be a random variable with the following distribution and codeword
assignment :

1
PriX=1) = > codeword C(1) =0
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1

Pr(X=2) = Z,codeword c(2)=10
1

Pr(X=3) = g,codeword C(3) =110
1

Pr(X=4) = g,codeword cC(4) =111

and we get the entropy H(X) =1.75 bits. In our case, H(X) < log,(N = 4 symbols) is verified.

b. Average number of bits per symbols

In the following part, we will consider ¢, the associated code to a symbol v. We will note L(c,) the
length (number of bits) of each code word c,. For a uniform code, the length is constant, with
L(cy) = log,(N). It is possible to compute the number of average bits L,, of a message using the
empirical formula :

Z

-1

L, = py L(cy)
0

<
Il

This formula means that you do the sum (for all the possible symbols) of the frequency occurrence
py of a symbol times the length L(c,) of the code word c,. L,, is the average length over all code
words.

¢. Shannon’s bound

Shannon showed that the entropy can be used to bound the average number of bits (average length
L,). Actually, Shannon showed that for all coding prefix, we have : H, = L,,. It is a lower bound. It
means that whatever the coding, it is impossible to do better than this bound.

This result is fundamental because it describes an unbreakable limit, whatever the technique used to
code. The mathematical proof is too complicated to be described here in the document. However, it
is also possible to bound L,, with an upper bound. It is defined by it exist a code without loss which
can be written by the formula H,, + 1. At the end, it is assumed that:

H,< L, < H,+1

The Shannon’s theory allows limiting the average length, which provides a powerful information on
the performance of a coding technique ! Regarding this theoretical part, it is possible to understand
what is the link between Shannon’s information theory and lossless data compression.
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2.3. Lossless data compression

Two simple sentences can summarize what is lossless data compression: “Data compression is
lossless when there is no loss of data from the original information. Indeed, the quantity of
information is the same before and after lossless compression” [3].

In information theory field, this requirement limits the compression efficiency. It is mandatory that
the entropy be the same before and after compression. This requirement limits the encoding
capacity. Actually, if the average codeword length L, is below the source’s entropy, the entropy of
coded message will be reduced and we will loose data, which is not the aim of lossless data
compression. Concept of lossless compression is to reorganize bits in order to achieve Shannon limit.

Many lossless data compression schemes exist, and we will describe some of the most popular
algorithms in part 3 of the following report.

2.4. Lossy data compression

Lossy data compression [6] is the contrary of lossless data compression. In these schemes, some loss
of information is acceptable. Actually, human perceptions are focused on some information. So
dropping nonessential detail from the data source can save storage space. In the case of Lena for
example, we are more interested in some shapes and curves of her body than the hat she’s wearing.

It means that lossy data compression schemes are designed based on how people “sense” the data in
question. For example, the human eye is more sensitive to little variations in luminance than it is to
the variations in color (chrominance). JPEG image compression works in part by rounding off
nonessential bits of information. There is a corresponding trade-off between preserving information
and reducing size. A number of popular compression formats exploit these perceptual differences,
including those used in music files, images, and video.

We will illustrate lossy data compression schemes with JPEG in the following part 3 in this report.
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3. Algorithms used for data compression

For this part, we limit our research on gray level pictures, but we can easily extrapolate our results on
RGB picture. We illustrate all compression schemes with the famous picture lena256, which size is
256 by 256 with 256 level of gray. So each pixel is coded on 8 bits.

3.1. Lossless data compression

a. Huffman code

Huffman code is a particular type of optimal prefix code that is used for lossless data compression.
The output from Huffman's algorithm can be viewed as a variable-length code table for encoding a
source symbol (such as a pixel in a picture). The algorithm creates his table from the estimated
probability or frequency of occurrence (in our case, apparition frequency of a pixel) for each possible
value of the source symbol.

The figure 1 below shows us the histogram of gray level in the picture lena256 :

0.012

0.01 +

0.008

0.006

0.004 |

0.002

0

0 50 100 150 200 250 300

Figure 1 : Histogram of a 256-gray level picture: lena256

The aim of Huffman algorithm is to attribute smaller prefix code for level of gray which has higher
apparition frequency. If we zoom in, pixels with the value ‘155’ have the largest frequency of
apparition, so they will have the smallest code which has a length of 6 bits. In comparison the pixel
with the value ‘29’ appears only one time in the picture, so it will be coded with the largest code of
16-bit length. An extract of the Huffman dictionary can be seen below in figure 2

38 39 40 41 42 43 44 45
[100111110][011000100J[11101001] [10101011] [01000101] [00000011] [1101101] [1001101]

Figure 2 : Each column indicates the gray level and the corresponding prefix code

10
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To construct the Huffman table, we use a tree. First we put the symbol and their relative probability.
Then we connect together the smallest symbols and reiterate this operation. We obtain the following

tree.
al: 0.4 2
10
a2 0,35 1
1
N 110 0.5
a% 02— | 0.
34: 0 05A 0.25

Figure 3 : ak is the symbol with its probability in red

Then we construct the prefix code by attributing ‘0’ for upper branch and ‘1’ for lower branch. In this
example, the symbol al will be represented by ‘0’, a2 by ‘10’, a3 by ‘110’ and a4 by ‘111’. When the
table is constructed, we can calculate the average codeword L, length in binary element per symbol,
where Q is the Huffman code set, L(c,) the length of the code and p,, its probability.

L= pyl)

XEQN

The L value indicates the number of binary element per symbol. In our case, we want that this value
is less than 8 binary element per symbol (original value of the sequence) and is as close as possible
the entropy of the source. The efficiency of a code is computed by the following expression.

CH®)
€=

Encoding process is easy: read the source sequence and convert each symbol with the corresponding
code. The encoding sequence length in binary element will be directly L * numberOfSymbol in our
case because we work with observed symbol frequency.

For the decoding, you must have the corresponding table (the dictionary) or the statistical
distribution of symbol. Then the algorithm constructs the Huffman tree and the sequence is placed in
input of this tree.

Results of Huffman coding :

Sequence length before coding 256 * 256 * 8 = 524288 binary element
Source entropy H(X) 7,4223 b.e. / symbol

Average length of a codeword L 7,4458 b.e. / symbol

Sequence length after coding 487966 binary element

Data compression ratio 6,9 %

Number of different pixel 0 pixel

11
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From now on, it is possible to state on Huffman coding.

Firstly : the encoder need to read twice the picture : one time to establish the dictionary, a
second time to encode input sequence.

Secondly : the decoder must know the statistical distribution of symbol which will be
transmitted, or the Huffman tree. So the compression gain is lost with the obligation to send
the tree. An adaptive version of Huffman coding exists : the encoder and the decoder begin
with the same tree, and at each new symbol coded and decoded the tree is updated on each
side.

Finally, Huffman code is close to the limit of Shannon, but we can use a better code to be
closer : the arithmetic coding.

Another way to obtain a better compression rate is to take into account that each pixel is correlated
with its neighbors. So it is possible to code only the difference between two pixels. This method
change the distribution of the symbol, as it is possible to see below on figure 4 :

0.1

-150 -100 -50 0 50 100 150 200

Figure 4 : Frequency (in Y-axis) corresponding to each symbol (X-axis)

So the Huffman coding efficiency will increase. Results are reported in the following table :

Sequence length before coding 256 * 256 * 8 = 524288 binary element
Source entropy H(X) 5,3676 b.e. / symbol

Average length of a codeword L 5,4025 b.e. / symbol

Sequence length after coding 354064 binary element

Data compression ratio 33%

Number of different pixel 0 pixel

Exploitation of some properties of the source can increase the compression efficiency. The Huffman
coding efficiency has reached 33% (remind : the efficiency was equal to 7% without correlation
consideration).

12
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b. Arithmetic code

Arithmetic coding [7] differs from Huffman coding in that : rather than separating the input into
component symbols and replacing each with a code, arithmetic coding encodes the entire message
into a single number, an arbitrary-precision fraction g where 0.0 < g < 1.0. It represents the current
information as a range, defined by two numbers.

Arithmetic coding must know the probability of each symbol. To show the encoding process, we will
code the sentence “ACFD”, with the table of probability below:

A B C D E F

0.4 0,2 0,15 0,15 0,05 0,05

First, the algorithm decompose a range between 0 and 1 according to the probability (first line in the
figure 5 below) :

A . B 1€ : D EF

‘0 0.4 106 1075 109 [0.95! 1
Pk - I
— . . .
| T ] ;
I . = — . .
. — . .
e~ - .
0 0.24 : 03 T~ & + 0.4
- o ~ I
e - -~ 3
e 1 ] 3 e S L 4
: i ] ] ] N D297 !
*0.24 _ - . ; : N oa
— N
i _IEE= I
3 s — e . I
- —
: = 3 ] ] -
1 0.297 B = ' : 0.29925 02997, 0.3
- I
= F

] 1 e

Figure 5 : decompose of a range between 0 and 1 according to the probability

Then we choose the range corresponding to the symbol to code. This new range is also subdivided
according to the probability of each symbol. The process continues until the final symbol, which gives
the final range: [0.29925; 0.2997]. Any number into this range is the compressed version of the
sentence “ACFD”. This number is coded in bit to obtain the encoded sequence.

As Huffman coding, it exists an adaptive arithmetic coding in order to suppress the first pass.
However using floating number can introduce error and difficulties in IT & Electronic fields.

c. LZ & variants

Lempel-Ziv data compression (abbreviate LZ) is theoretically dictionary coder. All dictionary data
compression are lossless, they do not introduce loose of information. It exists a lot of compression
algorithms based on LZ : LZ77, LZ78, LZW ... But all of them used the same idea. This type of data

13
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compression is widely used in the IT field, for example GIF and ZIP format implement a variation of
LZ.

This category of data compression will create the dictionary and the encoded output sequence at the
same time. But the most important feature is that the dictionary is not transmitted to the receiver.
Indeed decoder will reconstruct the same dictionary during decoding process.

We will present the LZW algorithm in detail because it is used in GIF format. The coding process is
explained below.

First LZW algorithm begins with a known dictionary  /meut
which contains all symbols. In this example thereare o0 o001 000000101000 01
two symbols : 0 and 1

Table Oulput
012345678 9ABCDE

01

We test the first symbol, which is inevitably present Input
in the dictionary [oJoo1o0o000001010000:1
Present 0

Table Qutput
01234567 89ABCDE

[o]

So we increase the window. Now the sentence 00 is Input
not in the dictionary. [ooJlo1oooo0001010000:1
New 00

Table Quiput
01234567 89ABCDE

01

The algorithm add this new sentence into the Input
dictionary [ooJlo1tooo0o00010100001
Add 00
Table Quitput
0123456789 ABCDE
010
1]
Then it will remove the last symbol of the window fnput
and code it. Here it will code the symbol 0 by the [ooJo1 0000001010000
code 0 Output 0 ¥
Table Quiput
012345678 9ABCDE o
010
0
Then it increases the start index of the window by Input
the previous number of coded symbol (here: 1 o[oJo 1 0000001010000
symbol). We repeat previous step : the sentence 0is  present 0
present into dictionary Table Output
01234567 89ABCDE o
@1 0
0
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Algorithm increases the window and test if sentence

00 is present into dictionary

Now the sentence 00 is present, so it will increase
the window. But now the sentence 001 is not into

dictionary

So it add this new sentence in dictionary.

Then it remove the last symbol of the window and
code it. So the algorithms code 00 by the code 2.

Next the window start index increases by 2 (because
we have coded 2 symbol previously), and we restart

the process.

The sentence 10 is not in dictionary

So the algorithm add it in.

Input

oo o]t ooo0o0o001010000 1

Present 0 0

Table Output
01234567 89ABCDE o

01

Input

ofo 0 1J]ooooo001010000:1

New 001

Table Quiput
0123456789 ABCDE ]

010
0

Input

ofo 0 1Jooooo0o0o1010000:1

Add 001

Table Qutput
01234567 89%9ABCDE 0

010 0
o0
1

Input

oo o 1J]oooooo1010000-

Output 0 0 X

Table Output
0123456789ABCPDE ¥4

010 0
00
1

Input

oooftJoooooo1010000:1

Present 1
Table Quiput
0123456789 ABCDE oz

0

00

1
Input
ooo[tojloooooi1o010000 -
New 10
Table Qutput
01234567 89%9ABCDE 02
010 0

00

]
Input
ooof[tojoooo0oo1010000 -
Add 10
Table Output
012345678 9ABCDE 0z
010 0 1

000

1

15
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Then it codes the sentence 1 because we remove to
the window the last symbol.

Input

0001 0j0OO0OO0CO0OO01TOT1TOOOO1
Output 1 H
Table Output
012345678 9ABCDE 021
010 01

000

1

Moreover, dictionary algorithm change the distribution of each symbol in a sequence. So after a
dictionary compression, there is often a entropy compression (Huffman, arithmetic, ...) on the output

sequence.

For decompression, only encoded sequence is needed. The decoder will reconstruct step by step the

dictionary and the original sequence.

First the decoder begins with the known dictionary:
all possible symbols are in the dictionary. Here there
are0and 1

Now decoder starts to read the first code which is 0
here. So the decoder knows that the code O
correspond to the symbol 0, but because of the
remove of the last symbol in the sliding window
during encoding process, he cannot determine next
symbol yet. This symbol is written by a variable x.

Thanks to the encoding process, the decoder also
knows that Ox is included in the dictionary. So it
adds Ox into.

Then decoder reads next code, which is 2. It looks to
its dictionary and finds that the code 2 correspond
to the symbol Ox. As the previous step, because of
encoding process, the output is Oxy. But now, we can
determine that x = 0. So we update x with is real
value.

Table Input
0123456789ABCDE 021220
01
New Output
Table Input
0123456789ABCDE [0]l21220
01
New Output
2 Ox 0x
Table Input
0123456789ABCDE [0lz1220
010

X
New Output
2 Ox 0x
Table Input
0123456789ABCDE olzl1zzo0
010

X
New Qutput
3 Oxy 0x

00xy
16
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The decoder adds the sentence 00y into the
dictionary. Variable y will be determined at the next
step

Then decoder reads next code, which is 2. It find the
corresponding symbol 1. It represents the unknown
next symbol by the variable z. Now it is possible to
determine the value of y which is 1.

The sentence 1z is added into the dictionary

The decoder takes next code which is 2. This code
corresponds to the sentence 00. The unknown
symbol is represented by variable w. Now it is
possible to determine the value of z.

Then the sentence 00w is added into dictionary

Results of LZW coding :

Table
0123456789 ABCDE

01 00
00
¥

New
3 00y

Table
0123456789 ABCDE

01 00
00
y

New

Table
0123456789ABCDE

01 00 1
00 z
1

New

4 1z

Table
0123456789ABCDE

01 00 1
00 z
1

New
5 00w

Table
0123456789ABCDE

01 00 10
00 00
1 w

New
5 00w

Input

o2l1zzo0

Output
000y

Input

oz21kz2o

Qutput

000y
0001z

Input

021kzo0

Output
0001z

Input

ozilzko

Output

0001z
000100w

Input

0212ko

OQutput
000100w

Seaquence length before coding

256 * 256 * 8 = 524288 binary element

Sequence length after coding

520800 binary element

Data compression ratio

0,66 %

Number of different pixel

0 pixel

17
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From now on, it is possible to assess about LZ coding :

e Firstly the implementation must be adapted, according to which type of data you encode.
For first tests and results we have taken a basic implementation of LZW, that’s why the data
compression ratio is not so good.

e Secondly there is no loose of gain in the data compression during the transmission, because
the dictionary is not sent, but the encoder and decoder must have the same implementation
of the LZ algorithm.

e Finally, the LZ coding reaches asymptotically entropy limit. So: the longer the input sequence
is, the more efficient is the coding code.

3.2. Lossy data compression : JPEG

We have seen previously that lossy data compression can be achieved using specific techniques
which are based on human senses. In this part, we will introduce a basic concept: image lossy data
compression. Let’s start with one of the famous: the JPEG (Joint Photographic Experts Group) format.

JPEG is a commonly used method of lossy compression for digital images, particularly for those
images produced by digital photography. The degree of compression can be adjusted, allowing a
selectable trade-off between storage size and image quality. JPEG typically achieves 10:1
compression with little perceptible loss in image quality.

We focus our research on the compression way of the standard JPEG. Indeed, it exists a lot of
standard about JPEG. The figure 6 below represents the encoding and decoding process used for
JPEG.

Image split into blocks 3 Forward Discrete Ly
{could also be Cosine Transform
downsampled) \l{

Encoded JPEG image <— Entropy encoding

Quantization

Decoded image Reverse Discrete .
reassembled from <— Cosine Transform <— Dequantization
blacks Y

Encoded JPEG image —» |Entropy decoding

Figure 6 : JPEG compression and decompression process

First, the image should be converted from RGB into a different color space called Y'CbCr : the Y'
component represents the brightness of a pixel, and the Cb and Cr components represent the
chrominance.

Then it is possible to downsample (e.g : losing information). Due to the densities of color- and
brightness-sensitive receptors in the human eye, humans are more sensitive to the brightness of an
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image (the Y' component) than to the chrominance (the Cb and Cr components). Please not that we
are not concerned by this step because we use gray-scale pictures.

Next step is to split the picture into small matrix of 8 by 8 and compute a discrete cosine transform
(DCT) on each block in order to go in the frequency domain (see figure 7).

image lena256 8x8 DCT of image lena256

Figure 7 : DCT on Lena

8x8 DCT of image lena256

Figure 8 : Zoom on 8-by-8 matrix. The most relevant information is at the top-left of each matrix

The main process in JPEG compression is the quantization. From this step we are losing some
information. This block rounds the frequency matrix, in order to remove high frequency information.
So the 8-by-8 matrix will contain information only in its upper-left part : many zero elements are
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introduced in the bottom-right. It is possible to control this round by the quantization matrix. This
parameter will define final quality of the picture.

And last but not least, Huffman coding exploits this high number of zero to drastically reduce the
final size.

To decompress the picture, the decoder has to know which quantization matrix have been used. It
rebuilds the DCT matrix, which is different compare to the original. Then it computes the inverse DCT
to construct the picture.

original image restored image with 1 coeffs restored image with 3 coeffs

Figure 9 : JPEG compression with variation of number of coefficient in the DCT matrix

In order to conclude on the JPEG format, the main idea of the JPEG is to perform in the frequency
domain and remove the high frequencies. Using this deception, the distribution of each symbol is
changed. Indeed, Huffman coding is more efficient with a non-homogeneous distribution of symbols.
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4. Technical implementation

4.1. Using LabVIEW

For the second part of our project, we will focus on the technical implementation for the data
compression. According to our tutor Tarik, the main goal is to create a digital transmission/reception
communication chain in order to test the data compression algorithms (both lossless and lossy) and
analyze the performances and the impact of the channel.

In order to design the communication chain, we will use the G language (LabVIEW). Dedicated to
instrumentation at the very beginning, LabVIEW has evolved to a new level: the LabVIEW
Communication Design Suite, dedicated to radio communications and signal processing.

From a personal point of view, working with LabVIEW is a ... nightmare®. This software has been
designed for SDR (Software Defined Radio). However, using LabVIEW instead of powerful tool like
MATLAB is like heresy. During this second part of our project, we have faced a huge number a
problems starting with the complex ability of LabVIEW to transmit 65536 values with a resolution of
8 bits (which corresponds to an image of 256 times 256 for each pixel having a resolution on 8 bits).
Working with these values conducted to a crash of our platform with a loss of our project.

So, we changed our computer and used the National Instrument Personal Computer of the SATCOM
lab regarding the recommendations of our tutor Tarik. However, even if equipped with 8 Go of RAM
and Gen 5 CPU 2.8 GHz (and Win 7 as operating system), some little changes occurred allowing to
test and obtain results.

Using entirely MATLAB would probably have conducted us to be more efficient. Using the
communication chain from the project 3 (DCOM) and adding the process for data compression
(lossless and lossy), should probably permits to go further in this project. We strongly recommend for
the next year project to have LabVIEW courses before starting the Project 1.

4.2. LabVIEW Design for data compression

Implement the data compression on LabVIEW is a hard challenge. At the very first beginning, our idea
was to use LabVIEW with MATLAB just for reading “.m” files, meaning: using LabVIEW for the
communication chain (modulation and emitting with NI USRP and reverse process for the
communication chain). However, using MATLAB code in LabVIEW is pure rip-off. Indeed, using
LabVIEW block containing MATLAB code is limited to basic functions of MATLAB and not the ones
you can create under MATLAB. Nice tried.

That’s why we jumped to another solution. We split the job to do into parts:

- First: implement a full communication chain under LabVIEW,

' LabVIEW requires an eagle’s eye view!

21

Project 1 : Data compression applied to images
Supervised by M. Tarik Benaddi



Isae =~

SUPAERD

- Second: transform the result of data compressed file under MATLAB into a binary file
(readable by LabVIEW) and then inject it in the input signal to transmit (without noise in the
channel) using compression lossless,

- Third: same as part 2 but with an AWGN channel simulated by Labview,

- Fourth: same as part 3 but with lossy compression (instead of lossless),

- Fifth: same as part 4 but with the use of two USRP (for a more realistic channel).

4.3. Lossless data compression : Huffman code

The complicated part (creating Huffman tree in LabVIEW) has been reduced dramatically due to the
use of a binary file provided to LabVIEW. Following this idea, it is not mandatory to provide to
LabVIEW something related to the compression part. The compression part is done by MATLAB and
the transmission is done by LabVIEW. The decompression is also done by MATLAB. The results are
observed on both sides: LabVIEW for the BER for example, and MALTAB for the figures.

The MATLAB code is provided in appendix meanwhile the LabVIEW code is provided separately on
the upload platform SourceForge.

So, we obtain as results this image, with E,/Ng =7 dB in BPSK:

Figure 10 : Huffman compression with Lena 256

Regarding to the results above, we can directly conclude that the value of E,/Ny has a powerful
impact on the quality. Indeed Huffman compression scheme creates a code word which corresponds
to a pixel. If a code word bit is altered, this code word will become two new code words. So one
original pixel generates two pixels and the image is shifted. Moreover if the first (or final) bit of a
code word is altered, this code word will be merged with is neighbor, so the two originals pixels
generate only one pixel.
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4.4. Lossy data compression : JPEG

For the lossy compression, we will implement the JPEG encoding. Using the previous part of this
report, we implemented an algorithm with normalization, the DCT, the quantization. Normally, a
Huffman coding or an RLE are added in the JPEG. For our project, we decided at the very first step to
not implement the Huffman coding after the zigzag process in the JPEG lossy compression.

Still using MATLAB and LabVIEW softwares, we implemented compression/decompression process
under MATLAB and transmission process under LabVIEW such as lossless part. The MATLAB codes
are provided in appendix. Please note that the quantized matrix is not defined randomly. It is also
possible to define your own quantized matrix. However, for all the following tests, we considered the
quantized matrix defined for the JPEG format:

16 11 10 16 24 40 51 61 ]
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 &7 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 T8 87 103 121 120 101
72 92 95 98 112 100 103 99 ]

JPEG can tune the quality of the picture with a quality factor g_JPEG. This factor plays an important
role in the compression rate. The quality factor generates a coefficient a with is multiplied by the
quantization matrix.

_ 0 <y JPEG<50
| q JPEG
2—% 51<q JPEG<99

As you can see below on figure 11, for E,/Ny = 7 dB and a BPSK modulation, we have:

Figure 11 : JPEG compression with Lena 256
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We can see impairments in the image, due to altered bits. However the image is not shifted because
we don’t introduce RLE compression yet. So it is possible to know exactly the beginning (start) and
the end of each 8-by-8 block. However, the image is not compressed, that's why we add the RLE
scheme after the quantization process. By introducing RLE (so in practice the End Of Block (EOB)
symbol) the end of each block is not fixed; and if the EOB is altered, we will obtain a shift like in
lossless coding scheme.

4.5. Optimization algorithms for lossless compression

Shifted images are not acceptable. So, we decided to introduce some processing tricks to retrieve the
original image.

First thing we can do is to introduce a new symbol: EOC (End Of Codeword). This symbol is
introduced after each pixel and takes the value 256. This, results in increasing the size of the image
twice. However Huffman coding scheme will attribute a very small codeword in terms of length. By
performing the new image with Huffman scheme, we can retrieve the end of each codeword and
avoid the shift in the picture.

Finally, we can generalize this algorithm by adding pilot pixels in the image. For example we can
introduce a symbol each 8 pixel block, where it is possible to tune the length of the block, to find a
trade-off between increasing the size of the image without shifting the image.

4.6. Optimization algorithms for lossy compression

During the tests on data compression and data decompression, we had several discussions in order
to reduce dramatically the errors occurring during the transmission process through the noisy
channel.

Multiple solutions can be founded (we were even talking about magic!) to decrease the numbers of
errors and increasing the compression factor. The idea here for the lossy compression is to examine
carefully on which part can be optimized for the coding and the decoding. Regarding the schematics
on page 18 (figure 6), it is possible to play on: the rate compression factor, the size of transmitted
information, the quantized matrix, the EOB location for example.

So, we created different algorithms in order to optimize the lossy compression.

a. Algorithm 1 : Fixed EOB

This one is dedicated to define an EOB position (End Of Block). The EOB is a used to inform that all
the remaining values are “0” in the 8*8 matrix. Here, we decided to keep only the 36 first values of
the matrix. This corresponds to the upper-left triangle of the 8-by-8 matrix. By doing this we remove
coefficients which are not so relevant, and increase the compression rate. We obtain a rate
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compression of 43.75% (meaning that an image with size = 64 bits before compression will size 36
bits after compression).

b. Algorithm 1+ : Zigzag reading with defined EOB location for each block

This algorithm can be presented as a “generalization of the algorithm 1”. In this optimized algorithm,
the idea is to define a specific location of the EOB symbol which will be the same for all the 8-by-8
block. The position of EOB is known from both sides (compress and decompress). This powerful idea
permits to avoid a shift of blocks because there is no EOB symbol transmitted.

Moreover, the position of the EOB tunes the quality of the picture, and we decide to bound the
coefficient at 16, otherwise the quality will be clearly degraded. So the compression factor oscillates
between 16, the lowest quality, and 64, the best quality (and no compression). The compression
factor is independent of the quality factor with this algorithm, so setting the quality factor to the
highest value is the best choice.

Caution! If this number is too small, we will lose information and degrade the image at the receiving!

c¢. Algorithm 2 : RLE DCT block

This one is focusing also on the EOB. Contrary to algorithm 1, the position of the EOB will change for
each block. A zigzag read is performed on the 8-by-8 matrix (following the rules of zigzag seen in part
3 of this report), and the EOB symbol replaces all the zero final values.

As we have seen in previous parts, values presents in the 8-by-8 matrix are bounded between -128
and 127 (so 8-bit coded). It is not necessary to code values with 9 bits in order to be able to introduce
a new symbol to represent EOB. We decided to code the EOB symbol with the greatest values (all of
the 9 bits with the value ‘1’).

For the decompression process, we may be confident with the EOB. Indeed if we failed to detect
EOB, we will obtain a shift in the picture. So we need to consider a threshold to detect the EOB. The
threshold is computed in order to have the less probability of alteration. This threshold has to be
enough high if one of pixel is altered, because it can become an EOB (due to the introduction of
noise).

We can also introduce some processing tricks: check if the EOB is followed by high values, or
introduce one ‘0’ before the EOB.

If the noise is too high, it won’t be possible to recover all EOB symbol, and some pixels will become
EOB symbol. So the usage of algo2 is restricted to a relative high Ep/No.

d. Algorithm 3 : Errors detection and correction capacity

This algorithm is dedicated to the detection and correction capacity. Here, the idea is to characterize
as a decreasing mathematical function the error detection ability and adjust levels of threshold in
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order to correct values that are supposed wrong. For the algorithm 3, the zigzag algorithm is required
to read the values in the matrix quantized.

Please note that algorithm 3 alone is not useful for compression. It must be added to algorithm 1 or
2.

In order to explain this algorithm we need to represent the decreasing characteristic of values
created by DCT. The graph below shows us the spatial dispersion of the coefficient.

120 | ' ]

value

10 20 30 40 50 60
position in zig-zag vector

So on the decompression side, we can detect if some values are above the orange curve. In this case,
it means that the most significant bit (MSB) has been altered (in practice we are not sure but there is
a high probability that it is true). So we can correct this value by transform the first ‘1’ value into a
‘0’. By doing this we reduce the apparition of error block and their impact.

4.7. Tests campaign

Please note that this campaign test took a lot of time to be performed on the computer we used.
Moreover, the reader may notice that we have a high number of errors introduced with the AGWN
that can be clearly seen on the picture. Don’t forget this is also due to the small size of the picture
taken.
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a. Lossless data compression : Huffman

Using our best photographed model for the data compression (Lena), we proceeded to a step by step
campaign for the lossless compression with AWGN:

- Lossless compression coding and decoding,

- Size of Lena : 256 * 256 (= 65536 matrix values) with 8 bits of resolution for each values,
- Modulation : BPSK,

- Ey/No=7dband 10 dB.

The results are provided in appendix II.

b. Lossy data compression : JPEG like

Again, we proceeded as the same method in order to make comparison between modulations and
coding using our best model Lena:

- Lossy compression coding and decoding,

- Size of Lena : 256 * 256 (= 65536 matrix values) with 8 bits of resolution for each values,
- Modulation : BPSK,

- Ey/Ng=7dband 10 dB

- Quality factor = 80

The results are provided in appendix lll.

c¢. Lossy data compression : real JPEG with additional stuff

Here, the idea is to test our algorithms dedicated to optimize the coding and decoding process. As
usual, we proceeded as the same method in order to make comparison between modulations and
coding using our best model Lena:

- Lossy compression coding and decoding,

- Size of Lena : 256 * 256 (= 65536 matrix values) with 8 bits of resolution for each values,
- Modulation : BPSK,

- Eu/Ng=7db,

- Quality factor = 80,

- Algorithm 1, 2, 3.

The results are provided in appendix IV.

d. Analyze of results, performances & complexity

We have seen so far that it is possible to compress data, in a lossless way or lossy way. We have seen
also that without a transmission channel (supposed perfect), we can decompress files (pictures in our
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case) and obtain zero errors whatever the E,/Np is. The first tests (which are not included in this
report) were dedicated to test our technical implementation of coding and decoding (both
compression) using MATLAB and LabVIEW.

The real challenge was in the addition of the AWGN channel in the transmission process. For the
lossless, we use the “normal” design for Huffman code for lossless compression, and normal JPEG for
the lossy compression.

Regarding the complexity of the system, the lossy implementation combined with algol is the
simplest to implement (implementation and number of operations). This combination provides a
good compression rate and a good quality, even if the BER of the channel is high. The received
picture is not shifted and it is possible to perform algo3 is order to remove extravagant values and
improve global quality.

Note: in order to analyze the performances, we computed the rate compression, which is a good
indicator of the compression regarding the quality factor. Reminder: in order to compute the rate
compression, we use the formula T = (1 — (Final volume/Initial volume)) *100. For the campaign test
realized, we obtained these values:

Huffman 6.93%
Algol (with compression factor of 36) 43.75%
Algo2 (with quality factor of 80) 54.35%
Algol+ (with compression factor of 20) 68.75%
Algo2 (with quality factor of 50) 71%

4.8. Going further

Due to the time we had for our project, we didn’t manage to proceed with part 5, meaning the use of
two USRP for a more realistic transmission channel. However, this part could be implemented by
others students next year using our project as a basis of work.

Moreover, it would have been also possible to design a specific quantized matrix. Some researchers
have explained how to define the optimal quantization matrix from psycho visual threshold [4]. We
strongly recommend our successors in this project to review and analyze this document. Indeed the
gquantization matrix can be optimized. Of course, this quantization matrix won’t the one for the JPEG
compression but something different. This may be an opportunity

Another point to develop in order to go further is the idea to reuse the job done by others students
group this year in order to add more tests and opportunities to develop specific chain of transmission
such as integrate an LDPC, use of optical transmission instead of radio frequency links (in case of the
BER of optical transmission is equal to 0).
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CONCLUSION

It exist multiple data compression algorithms, each one having his particularities and especially a
type of target in each case. All of the data cannot be compressed using the same way (e.g. same
algorithm). A compression data algorithm of text will be based on a recurrence of the number of
characters or pieces of sentences. Another algorithm used for data image compression will be based
on the difference between two pixels co-located.

If we would discuss and make a choice between all of data compression algorithm and the best rate
for compression, this would be useless. Actually, there is no best compression algorithm used to
provide the best compression rate. It all depends on the source you have in input of your
compression block. It all depends on the structure of your data you want to compress.

However, all of these algorithms have a common ground between them: their objective is to recover
the initial data (partially or integrally).

During the second part of our project, we implemented under LabVIEW and MATLAB a full
communication process using compression algorithms. We saw that the use of AWGN channel
introduces a lot of errors in your original image. To correct these errors, multiple solutions can be
implemented using several algorithms.

Thanks to our tests campaign, we have concluded that it is possible to use both (lossless and lossy)
compression when you want to transmit something. However, the use of lossless or lossy is
conditioned most of the time by your E,/Ng:

- small value of Eb/NO : : it is recommended to use lossy compression with fix EOB position.
- high Eb/NO: it is recommended to use lossless data compression.

Moreover, the use of a robust modulation (such as BPSK) is mandatory if you want to limit the errors
added by the channel.

This project was really exciting from a technical and human point of view. We had to face multiple
difficulties but it was worth challenging. We hope that our project will be useful for others students
and further applications. Our job is free of use, the only requirement we are asking is to be added in
bibliography of future projects.
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Appendixes | : MATLAB and LabVIEW source codes

MATCLAB and LabVIEW codes are available on SourceForge.
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Appendix Il : campaign test lossless compression

Parameters:

BPSK // Eu/Ng = 7
dB

Lena = 256 * 256

# of errors : 459
BER=9 *10™

Parameters :

BPSK // E,/Ng = 10
dB

Lena = 256 * 256
#of errors : 3
BER=6 * 10°
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Appendix Il : campaign test lossy compression

Parameters :

BPSK // Eu/Ng = 7
dB

Lena = 256 * 256
Quality factor =80
# of errors : 7

BER =9 *10™

Parameters :

BPSK // Eu/Ng = 10
dB

Lena = 256 * 256
Quality factor =80
#oferrors: 1

BER =6 * 10°
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Appendix IV : campaign test lossy compression optimized

il = & Parameters:

3 ‘ Algol
BPSK//E,/No=7 dB
Lena = 256 * 256
Quality factor =80
# of errors : 265
BER =8 * 10™

|

Parameters :
Algo2
BPSK//E,/No=7 dB
Lena = 256 * 256
Quality factor =80
# of errors : 222
BER =9* 10

Parameters :
Algo3
BPSK//Ey/No=7 dB
Lena = 256 * 256
Quality factor =80
# of errors : 466 !
BER =8 * 10™

(If you can find the
466 errors, you're
definitely a boss !)

33

Project 1 : Data compression applied to images
Supervised by M. Tarik Benaddi



Isae =~

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

Girino, «Data Compression: A little introduction for beginners,» [En ligne]. Available:
http://blog.girino.org/tutoriais/data-compression-a-little-introduction-for-beginers/.

M. Cagnazzo, «Principes du codage sans perte, Codage d’Huffman, Lempel-Ziv, arithmétique,»
2013.

WebService'Est, «Mieux comprendre les deux principales familles de compression,» 25 February
2015. [En ligne]. Available: http://www.webservice-est.fr/partie-2-mieux-comprendre-les-deux-
principales-familles-de-compression/.

Wikipedia, «Huffman coding,» 6 11 2017. [En ligne]. Available:
https://en.wikipedia.org/wiki/Huffman_coding.

S. H. N. Ferda Ernawan, «The Optimal Quantization Matrices for JPEG Image Compression From
Psychovisual Threshold,» 2014.

FAQ, «Comp.compression Frequently Asked Questions (part 1/3),» 05 09 1999. [En ligne].
Available: http://www.fags.org/faqs/compression-fag/partl/index.html.

G. Peyré, «Claude Shannon et la compression des données,» 2016.
P.-H. Wang, «Data Compression,» 2012.

J. Fors, «Information Theory Lecture 3: Data Compression,» Linkdping University, 2013.

[10] Wikipedia, «Entropy (information theory),» 19 11 2017. [En ligne]. Available:

https://en.wikipedia.org/wiki/Entropy_(information_theory).

[11] D. Delaunay, «Compression et entropie,» [En ligne]. Available:

http://mp.cpgedupuydelome.fr/document.php?doc=Compression%20et%20entropie.txt.

[12] Y. Ollivier, «La théorie de l'information : I'origine de I'entropie,» [En ligne]. Available:

http://www.yann-ollivier.org/entropie/entropiel.

[13] D. M. N. Joseph, «Principes généraux de codage entropique d'une source».

[14] ENS, «Compression de données (compléments)».

[15] P. Pansu, «Entropie,» 2012.

[16] M. G. Urban, «Voyager Image Data Compression and Block Encoding,» California Institute of

Technology, 1987.

34

Project 1 : Data compression applied to images
Supervised by M. Tarik Benaddi



Isae =~

[17] Wikipedia, «Codage arithmétique,» 27 09 2017. [En ligne]. Available:
https://fr.wikipedia.org/wiki/Codage_arithm%C3%A9tique.

[18] Wikipedia, «Codage entropique,» 21 05 2017. [En ligne]. Available:
https://fr.wikipedia.org/wiki/Codage_entropique.

[19] Wikipedia, «Data compression,» 08 03 2018. [En ligne]. Available:
https://en.wikipedia.org/wiki/Data_compression.

[20] Shaaban, «Data Compression Basics,» 2000.

[21] G. Dallas, «Data Compression: What it is and how it works,» 04 08 2013. [En ligne]. Available:
https://georgemdallas.wordpress.com/2013/08/14/data-compression-what-it-is-and-how-it-
works/.

[22] L. Wehenkell, «Introduction to information theory and coding».

[23] Divers, «Introduction a la théorie de I'information,» [En ligne]. Available:
http://www.bibmath.net/crypto/index.php?action=affiche&quoi=complements/entropie.

35
Project 1 : Data compression applied to images
Supervised by M. Tarik Benaddi



