
Specification for Nanostar Software Suite (NSS)

Nanostar Project

Version 2.1

Centre Spatial Universitaire de Toulouse

Thibault Gateau - Lucien Senaneuch

Thursday, 20th June, 2019

1

Contents
1 Introduction 3

1.1 Context: Nanostar Project . 3
1.2 Context: Work package 2 . 3
1.3 Nanostar Software Suite Goals . 4

2 Nanostar Software Suite Overview 5
2.1 NSS concept: One Software Suite to Bind Them All 5
2.2 Requirements Overview . 6

2.2.1 Requirements typology . 6
2.2.2 Global requirements . 6
2.2.3 Expected for each module of the constellation 6
2.2.4 Coordination Tasks . 7
2.2.5 Deliveries . 7

2.3 Development team . 8
2.3.1 Available human resources by institution 8
2.3.2 Sub-contractors available budgets 8

2.4 Development plan - NSS v1 . 9
2.4.1 Some key dates . 9
2.4.2 Workplan . 9
2.4.3 Current Overview . 12

3 NSS-Core 15
3.1 Respect of existing standards . 15
3.2 NSS-Core Overview . 15
3.3 Nanospace functionalities . 15
3.4 Software Architecture description . 17

3.4.1 Prototyping and technical notes 19
3.4.2 Data model . 20
3.4.3 User interface . 23

4 Domain specific software constellation 25
4.1 Existing materials . 25

4.1.1 Existing standards . 25
4.1.2 Existing and operational software: NSS v0 25

4.2 Specification for constellation software developments 27
4.2.1 Mission Analysis . 27
4.2.2 Structure Module . 31
4.2.3 Link Budget Module . 33
4.2.4 Data Budget Module . 34
4.2.5 Thermal Architecture . 35
4.2.6 Interface with IDM-CIC . 35
4.2.7 Radiation budget module . 36

2

4.2.8 Preliminary ADCS sizing . 37
4.2.9 Activity profile management . 38
4.2.10 EPS module . 39

5 Annex A: Input / Output format proposition 41

1 Introduction

1.1 Context: Nanostar Project
Nanostar project1 proposition aims at supporting training and development of student nanosatel-
lites in Europe: the challenge of the project is to provide students with the experience of a
real space engineering process that includes all stages, from conception and specifications,
to design, assembly, integration, testing and documentation. That is, the whole process
through a network that combines high-level engineering careers and entrepreneurial ven-
tures in the area of nanosatellites.

Nanostar will allow Southwest Europe to train students with a high level of skills in
space engineering and project engineering, in order to become the future main players in
the field of nanosatellites. Nanostar is funded by the Interreg Sudoe Programme2 through
the European Regional Development Fund (ERDF).

1.2 Context: Work package 2
The objective of this work package is to set-up the “Nanostar software suite”, in order to
define and implement the software tools for the CDF (Concurrent Design Facility). The
definition of these “specialized” tools, after an inventory of existing software and expertise
of academic partners, and testing or prototyping tools, will allow to define the needs for
new tools, and the use of these tools for the preliminary design of nanosatellites. Nanos-
tar project will provide a software suite in this sense. The development of interfaces and
network /collaborative work tools will lead to the realization of different challenges. An
additional contribution will consist in using design and analysis models of nanosatellites
from requirements elicitation process to requirements validation process. Each academic
partner will provide a set of software that can be used in the frame of this project, associ-
ated with its own expertise. It will be profitable to integrate these academic contributions
with the CNES software base that is used everyday in the design real satellite projects.
This requires the use of compatible languages, standardized and suitable interfaces for data
compatibility and exchanges. A new contribution may require data from existing CNES
software and will also provide additional results that must be compatible with other sys-
tems. For example, an academic software can provide ephemeris that have to be taken into
account in IDM-CIC (CNES software) to design subsystems such as power. The integra-
tion of the overall platform will be supported by an IT firm according to the specifications

1http://nanostarproject.eu/
2http://interreg-sudoe.eu/inicio

3

http://nanostarproject.eu/
http://interreg-sudoe.eu/inicio

established in WP2. Strong collaboration between academic partners will be required in
order to allow an efficient process and concrete realizations.

1.3 Nanostar Software Suite Goals
In a nutshell, the Nanostar Software Suite (NSS) should allow a group of engineers, not
fully specialized in space domain, to realize a pre-design analysis (0 phase, A phase) of a
nanosatellite mission. This is usually considered as a feasibility study.

From some requirements deduced from the payload mission objective, engineers should
be able to produce all classical system budgets:

• Mass budget

• Power budget

• Link budget

• Data budget

• Propellant budget

• Dissipation budget

• Radiation budget

They should also be able :

• to propose a preliminary Mechanical architecture

• to propose a preliminary Thermal architecture

• to propose a preliminary ADCS sizing

• to propose an Activity profile

• to propose a Launcher restriction choice

• to check LOS respect

• to check specific payloads constraints

A methodology has been defined to ease the process of generating these elements, Con-
current Design Facilities [Di Domizio and Gaudenzi, 2008]. Many implementations are
proposed by space agencies (OCDT, IDM-CIC, CDP4, Valispace, Team-X, Virutal satel-
lite... [ESA, 2019, Le Gal and Lopes, 2016, Rheagroup, 2019, DLR, 2019, Schreiber and
Carley, 2005, Oberto et al., 2005, Valispace, 2019]).

4

However, to deploy them in a practical use fulfills our needs only partially. Some
methodological limits must be taken into account [Braukhane and Bieler, 2014] and no
tool is providing "as is" from an academic point of view all the features we are looking for.
Developments are therefore required, specifically on two axis:

• the space mission database management, concerning interaction and visualization
designed as NSS-Core Chapter 3 (p.15);

• the integration of domain specific software designed as NSS Software Constella-
tion, i.e. how to make them work smoothly together Chapter 4 (p.25).

2 Nanostar Software Suite Overview

2.1 NSS concept: One Software Suite to Bind Them All
Designing a nanosatellite requires close interrelation between different fields, with respec-
tively strong level of expertise, all the more so as development progresses. During Cubesats
preliminary design many budgets are essential (mass, power, link, data, dissipation). Their
local inputs, outputs and models are often intertwined. For instance, power budget rely on
payload requirement, platform operational up-keeping, eclipses frequencies/duration, and
batteries specifications. It will impact mass budget (e.g. number of required batteries, solar
panels and wires, etc.), and reciprocally. But dissipation budget will also be concerned
(batteries will only work between temperature extrema), heaters and radiators used will
also impact mass budget and so on. All this process is, to our current knowledge, far to be
unified with an ideal set of tools. Functionalities are often redundant between the different
soft used, or even re-developed each time required rather than re-used. Fortunately some
software bricks already exist, such as space mechanics libraries. Efforts on standardization
are also undertaken (CCSDS) mainly concerning telecommunication protocols, and to a
lesser extent, ephemeris formatting or equipment description. Even if they are paving the
way for consistently interconnected suite of tools, proceeding end to end mission analy-
sis lack of unified, consistent standards and open source tools. ESA and national space
agencies are now proposing their own proprietary concurrent design facilities.

Here comes the idea for one tool to bind them all (and let’s hope so not in the dark-
ness bring them) or more precisely, a well defined suite of tools to help to get a strong
consistency for a mission analysis preliminary design, which can follow the project to all
it’s live cycle thanks to a strong interconnection with experts tools. Optimally, each expert
should be able to take (up to date) needed inputs on its own tools and provide to the team
expected outputs, in a transparent way. Thanks to our previous and on-going nanosatel-
lite projects, we have a more practical vision on specific nanosatellite project needs, and
redundant software usage and developments we are used to be facing.

5

2.2 Requirements Overview
2.2.1 Requirements typology

• Requirement that should be respected “as is” will be designed with a bullet (•) in this
document.

• Requirement that can be adapted, in accordance with the development team, will be
designed with a circle (◦) in this document (i.e nice to have).

2.2.2 Global requirements

This project is funded by SUDOE. Seven academic partners are involved. As a matter of
fact, Nanostar Software Suite should be:

• Open source (AGPL v3)3

• Cross platform

• Ergonomic, with a student friendly user interface

• Use of Standards, insofar as possible

• Modular (each module should have a stand-alone version)

• Well documented (code API & quick-start guides)

◦ Design responsive

2.2.3 Expected for each module of the constellation

In every module, we have these following requirements:

• independent library for any domain specific tools that can be easily called by third-
party software;

• well documented API on this library;

• Python API for domain specific calculus;

• Python command line example using this API;

• Backend that implements this API in REST;

• Angular based front-end which implements the REST interface;

• modules must be open-source, with an AGPL v3 license4;

3https://www.gnu.org/licenses/agpl-3.0.en.html - accessed March, 1st 2019
4https://www.gnu.org/licenses/agpl-3.0.en.html - accessed March, 1st 2019

6

• stand alone version of each module, working in a local way.

• code quality including test unit for each methods, integration and performance tests
for whole module;

• ISAE-SUPAERO’s Sourceforge platform will regroup source code deliveries and
documentation, organized in one global project, subdivided in sub-projects. Each
sub-project includes a git deposit.

2.2.4 Coordination Tasks

During whole development phases, and specially during last months we will need to:

• write integration tests for the whole NSS (core + constellation) for testing and vali-
dation purpose;

• write a global tutorial on a typical example scenario to illustrate NSS usage;

• check that CDF of each partners is operational:

– room availability

– all hardware installed check

– NSS installed or at least remote NSS server accessible

2.2.5 Deliveries

In every module and for NSS core and modules, we have these following requirements:

• source code, organized in a standard schema:
.

doc/
README.md
LICENCE
src/

• working stand-alone example;

• quickstart guide;

• REST API documentation;

• REAMDE.md (markdown) file describing dependencies, compilation process, run-
ning example, running tests and limitations;

7

2.3 Development team
2.3.1 Available human resources by institution

A part of the development team is already formed, but not completed.

• One part-time IST staff member affected to the project (Paulo Oliveira);

• One full time ISAE-SUPAERO staff member is affected to the project (Lucien Sena-
neuch - 100%);

• One part-time ISAE-SUPAERO staff member is affected to the project (Thibault
Gateau - 14%);

2.3.2 Sub-contractors available budgets

Sub-contractors will be hired, in accordance to workpackage 2’s leaders, depending on
their resources affected in workpackage 2 (see Table 1). The proposition of role affectated
is visible on Table 2).

Partner Sub-Contractor allocated estimated budget
Bordeaux INP 19,7 kC∗

ISAE-SUPAERO 65.0kC
UM 21.425kC
UPM 30kC
UC3M 20kC
IST 30kC

Table 1: Overview of provisional expense for sub-contractors

*: Bordeaux INP may have a bit less (not exceeding 15% of difference) according to
March 2019 meeting in IST.

8

2.4 Development plan - NSS v1
2.4.1 Some key dates

• Public offers publication (April 1st);

• Subcontractors are selected (April 30th);

• Technical coordination with sub-contractors (around May, 15th);

• Technical review of on going development (in July, 31st);

• Development deadline is set to August, 31st;

• NSS availability ready for new challenges in September, 31st.

2.4.2 Workplan

The Gantt chart below summarizes proposed development steps. Development date start
for NSS v1 has been set to February 15th (2019). For visualisation purpose, "TODAY" is
set to July 9th. Unit is counted in weeks, from February 15th to August 31st

9

10

TODAY

WEEKS: 111 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

80% complete1 Core-NSS dev

100% completeArchitecture specification (a)

100% completeDev Alpha version (b)

80% completeDev Beta Version (c)

30% completeTutorial setup (e)

5% complete2 Software constellation dev

90% completeWrite and Publish offers (a)

20% completeWait for proposal (b)

10% completeSelect subcontracto (c)r

0% completeDevelopment initialisation (d)

0% completeIntegration with NSS check (e)

0% completeDevelopment (beta) (f)

0% complete3 Global integration

0% completeDeployment (a)

0% completeExample scenario (b)

FINISH-TO-START

FINISH-TO-START

FINISH-TO-START

FINISH-TO-START

11

2.4.3 Current Overview

Global architecture of NSS is visible on Fig. 1. Each institution is expected to have a
currently working CDF Fig. 2. A set of modules have been defined as necessary for having
an operational NSS (see Table 2).

Communication by :
- Data requests
- Data changing events
Scripts, Desktop app,
or Services

Mecanical
Architecture

Luplink
(ISAE-SUPAERO –
internal dev)

Data/Link Budget

Mission Analysis

Thermal
Architecture

EPS

IDM-CIC
(CNES tool)

Niposs
(ISAE-SUPAERO
internal dev)

Thermal Node
(UM subcontractors dev)

JSatorb
(ISAE-SUPAERO –
internal dev)

LOS respect
Activity Profile

VTS
Timeline User Interface
(UC3M subcontractor dev)

Mass Budget

Power Budget

Link Budget
Data Budget

Propellant
Budget

Dissipation
Budget

Data
Base

AOCS
pre-sizing

PILIA
(IST subcontractor dev)

Interface
(BINP subcontractor dev)

(BINP subcontractor dev)
PILIA
(IST subcontractor dev)

STELA
(CNES Tool)

Radiation
impact
study

Figure 1: NSS current state, architecture overview.

12

Bring Your Own Computer CDF

Large Visualisation Screen

Visio Communication Screen

Figure 2: Example of current CDF room at ISAE-SUPAERO

13

Id Module Base Tool State Responsible
1.1 NSS Core Front-end Nanospace dev on going [X] SUPAERO
1.2 NSS Database imp. based on neo4j dev on going [X] SUPAERO
2.1 Mass budget module IDM-CIC dependency [2.7] -
2.2 Power budget module IDM-CIC dependency [2.7] -
2.3 Propellant budget module IDM-CIC dependency [2.7] -
2.4 Link budget module Luplink (JSatorb) dev on going [X] SUPAERO
2.5 Data budget module Luplink (JSatorb) dev on going [X] SUPAERO
2.6 Thermal architecture None Yet dev to do [X] UM/UC3M
2.7 Interface with IDM files REST API dev to do [X] BINP
2.8 Radiation budget module None Yet dev to do [X] UPM
2.9 Mechanical architecture IDM-CIC dependency [2.7] -
2.10 Preliminary AOCS sizing None Yet / Pilia dev to do [X] IST
2.11 Activity Profile Nanopower/VTS dev to do [X] UC3M
2.12 check LOS respect Stela done [] -
2.13 Visualization VTS/IDM-View dependency [2.12] -
2.14 EPS sizing module Nanopower dev on going [X] SUPAERO
2.15 Mission Analysis JSatorb dev on going [X] SUPAERO
2.16 Broker Choice None Yet∗ optional -
3.1 Constellation Integration - dev to do [X] SUPAERO
3.2 Partners Synchronization - dev to do [X] SUPAERO
3.3 Full working scenario Quickstart guide dev to do [X] SUPAERO

Table 2: NSS modules state development overview

∗: isisspace.nl is already providing a databases.

14

isisspace.nl

3 NSS-Core

3.1 Respect of existing standards

Databases:

A standard is proposed for data that are manipulated in a CDF: ECSS-ETM-10-25A. In
practice, the document describing this standard is not directly accessible 5

• Definition and vocabulary of ECSS-ETM-10-25A should be respected to be consis-
tent with space agencies [European Cooperation for Space Standardization, 2019].

◦ A prototype of the database management has been implemented in neo4j6 (Fig. ??).

Protocol exchange:

◦ Domain specific softwares can be seen as REST components for NSS-Core;

◦ JSON format for data exchange is favored.

3.2 NSS-Core Overview
NSS-Core includes a connected database that allow to store a satellite model. It’s located
on the Back-end (see Fig. 3). This database is accessible through a software component
called "Model Manipulation Service" . A User Interface (UI) is also available to ease
human interaction with this database. The main goal of the UI is to visualize and to modify
the element stored. This set of tools form a self-sufficient software. It provides a full and a
synthetic system view thanks to the centralization of the whole model’s data.

3.3 Nanospace functionalities
This is a list of functionalities :

• the data model consists of:

– project storing elements that will constitutes the model;

– components composing Project;

– mode describing the different functional options of a component;

– value characterizing mode (and characterizing indirectly his component);

– user who is responsible of the project or elements;

• 4 types of values are allowed:
5https://ecss.nl/standard - Accessed January 31st
6https://neo4j.com/ - Accessed January 31st

15

https://ecss.nl/standard
https://neo4j.com/

Database

Nanospace User Interface
Third party
application

1

Model Manipulation Service

Back-end

Third party
application

2

Third party
application

3

Figure 3: NSS-Core Overview.

16

– formula storing calculations or numbers;

– static value stored as text or string;

– matrix storing formula or string values;

– requirement storing a condition which can include formula or numbers; values
(boolean result);

• on the user interface, a user should be able to:

– authenticate himself for accessing to the application and the projects he is re-
sponsible of;

– add other user as responsible;

– create and modify a project or a model (project composition of element);

– characterize the model with values;

– create requirements based on model characteristics;

– use classic functionalities such as copy, drag-and-drop, auto-completion;

– create one or several modes for each components;

– access to all the requirements;

– export or import the entire model on a system file;

– be notified when a modifications is occurring on the data displayed by the UI;

– access to an history of the past modifications;

– be notified of a required change whether if the data are displayed or not;

• third-party programs can also access to the database:

– authenticate themselves;

– create, modify, or delete elements of the model7;

– cannot create requirements;

– cannot create project.

A NSS-core use case is illustrated below (see fig Fig. 4).

3.4 Software Architecture description
The general architecture consists of 3 main components (see Fig. 5):

• The database (in the server side): data manipulated can easily be represented in
the form of a hierarchical tree with variable depth. To increase performance when
handling this type of data, it is stored in graph form. In addition, data must be write-
protected in order to allow access competition. Neo4j fills these requirements. In

7Each modification of the database is logged

17

Actor

Overview of the model

Manage the model

Characterize the model

authenticate

with a formula or number

with a matrix

with a string
Program

User

be aware of data change
events

create requirements

Figure 4: NSS-core use case

addition Neo4j has ACID8 properties. It is a NoSQL database storing graphs. Neo4j
has also a larger community than other databases such as OrientDB [Vergnes, 2015];

• The graphical user interface (GUI) : this is the main application for interacting with
the model. It is based on web technology since we still want a cross-platform access
without any installations from client side;

• A model manipulation service component that allows applications (webpage GUI,
scripts, etc.) to manipulate the model. This service allows specific domain applica-
tions and user interface to communicate with the database. The technology chosen
depends of the facility of the database manipulation. Neo4J’s advise is to use Java
which allow to manage it easier with a higher abstraction level. Spring java frame-
work is therefore the most logical candidate.

Communications between third party services and the application need also to be taken
into account, to ease access to the database for any type of program and language (Python,
C, C++, java, Go, Octave, Julia...). An interface with a high level of abstraction is nec-
essary. In this purpose, we have chosen to be oriented as web applications, using HTTP
requests and respecting REST (REpresentational State Transfer) convention 9.

Additionally, we have to deploy additional components (see Fig. 5):
8Atomicity, Consistency, Isolation, Durability
9https://www.ics.uci.edu\simfielding/pubs/dissertation/rest_arch_

style.htm

18

https://www.ics.uci.edu$\sim $fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu$\sim $fielding/pubs/dissertation/rest_arch_style.htm

Interface available
from front-end and
domain specific applications

Server Side

Client browser

 HTTP REQUEST

 Publish Data Subscribe to Data

Database
(MongoDB)

Store Data events
 (creation, delete and update)

History Service
(Javascript)

Manage data access throught Http
Subscribe

 Data subscription

Database
(Graph database Neo4J)

System and Subsystems data

Message Broker
(RabbitMq)

« Events Bus »

 HTTP REQUEST

Nanospace Service
(Javascript)

« Access to data through Http
Provide basic

distributed methods »

h t tp

Client Web Page
(Javascript)

Web Server
(Nginx)

« Provide web application »

BOLT

Figure 5: NSS Core architecture.

• an HTTP server (Nginx or Apache) allows to serve the main graphical interface;

• a Broker message deals with asynchronous events between each application (Rab-
bitMQ);

• we choose to store the data on a MongoDb database which allows to store documents
(each document corresponds to a dated event having circulated on the bus).

3.4.1 Prototyping and technical notes

A prototype has been developed in order to show the feasibility of the product on the
following features:

• view a model as a tree;

• creation and Modification of project and model;

• sign in;

• be aware of data changes through historical.

Only the service layer was originally developed using Node.js10 language. However,
Neo4j does not offer a software layer to map requests as objects with Node.js. This feature,

10https://nodejs.org/en/

19

https://nodejs.org/en/

which will save time on future developments, is only available in python (community code)
or Java (code managed by Neo4j).

3.4.2 Data model

In the proof of concept the initial choice was to be satisfied with a reduced number of
entities in the database. Only four entities ("User", "Project", "Components", "Values")
have been taken into account. These four entities are insufficient and it is necessary to
make the model more complex in terms of database. Since data is stored in the database in
a graph form, the graph below models the entities as nodes of the graph (see the model on
Fig. 6 and an example of implementation Fig. 7).

20

(Element)
Components

(Value)
Matrice

(Value)
String

(Value)
Number

(Value)
Formula

(Element)
Value

(Value)
Requirement

(Element)
Project

User

Responsible

(Element)
Mode

have

isModulableWith

isComposed

Create

Create

Create

Create

isComposed

+ string

+ number
+ marginHigh
+ marginLow

+ condition
+ conditionResult

+ formula
+ formulaResult
+ marginHigh
+ marginLow

(Element Entity)
+ idElement
+ name
+ creationDate
+ modificationDate
+ responsibleList
+ description

+ idUser
+ name
+ mail
+ password
+ role

isComposed

+ width
+ height

Figure 6: Neo4j based database model prototype.

21

Orbitology

SMA
=

7000000

BrickSat

Nominal
Mod

ECC
= 0

INC =
51

PA = 0

RAAN
= 0

lM =
65

Satellite

Structure

Payload

AOCS RF EPS

Nominal
Mod

TransmitIDLE

BatterieAntenna

Nominal
Mod

mass power
consumption

power
consumption

power

Max
Power

consumption

mass

mass

mass

Agregation
of Mass

Figure 7: An example of implementation of the model.

22

3.4.3 User interface

A basic wireframe interface show the kind of interaction the user could have (see Fig. 8 to
Fig. 11.

Figure 8: User has just loaded the project.

23

Figure 9: User can access to a context menu to modify the model.

Figure 10: By clicking on a component a user can display characteristic values.

24

Figure 11: By clicking on a value the user toggle a menu to modify it.

4 Domain specific software constellation

4.1 Existing materials
4.1.1 Existing standards

• OEM files [Ephemeris - List (stellar object,date,position,velocity)]
(CCSDS Orbit Data Message)

• AEM files [Attitude profile - List (date,quaternions)]
(CCSDS Attitude Data Message)

• MEM files - xml format - description of spacecraft sub-components, mechanical
structuring, modes, power consumption according to modes, etc.
Not clear, but IDM-CIC files seem to respect this standard.

• ECSS-E-TM-10-25A [European Cooperation for Space Standardization, 2019]

• no real standard for geometric data but consensus around STEP file

• EDS (Electronic Data Sheet) for equipment.

4.1.2 Existing and operational software: NSS v0

Mission Analysis:

25

Orbit definition, surface coverage, visibility windows, eclipse calculation, etc.
* Recommanded
Celestlab - https://logiciels.cnes.fr/fr/content/celestlab
GMAT - https://software.nasa.gov/software/GSC-17177-1
VTS - https://logiciels.cnes.fr/fr/node/19?type=desc

* Alternatives
Orekit - https://www.orekit.org/
Patrius - https://logiciels.cnes.fr/fr/node/61?type=desc
PSIMU - https://logiciels.cnes.fr/fr/node/97?type=desc
Genius - https://logiciels.cnes.fr/fr/node/75?type=desc
Docks - https://cceres.psl.eu/spip.php?rubrique37
Astropy - http://www.astropy.org/
Satorb - https://sourceforge.isae.fr/projects/dcas-soft-espace/
repository/raw/supportLight/Satorb_V07_setup.exe

Structure - Power Budget - Mass Budget:

Allow to build a light 3D structural model, defining subcomponent and their respective
power and mass. Spacecraft mode can also be detailed, impacting power consumption
(and dissipation) of each subcomponents.

* CNES IDM-CIC [Le Gal and Lopes, 2016] can be directly used to get mass and power
budgets. Thanks to its internal subsystem component definition and Sketchup tools, it’s
also possible do design the Mechanical architecture.

Access request must be done to your local supervisor (Access is restricted to Nanostar
Members)

Dissipation Budget:

Allow to characterize temperature reached on each node of the spacecraft. Allow to
check that temperature operating range of each equipment is respected.

* Manual Scripting (Scilab, Python, Octave...)

Link Budget - Data Budget:

Estimation of the margin for uplink and downlink connection with earth must be pro-
vided. That allow to size the useful data flow that can be exploited. Required on board data
must also be sized according to last parameters and data budget.

* Amsat Excel Sheet - https://amsat-uk.org/tag/link-budget/
* and Manual Scripting (Scilab, Python, Octave...) * Satorb - https://sourceforge.

26

https://logiciels.cnes.fr/fr/content/celestlab
https://software.nasa.gov/software/GSC-17177-1
https://logiciels.cnes.fr/fr/node/19?type=desc
https://www.orekit.org/
https://logiciels.cnes.fr/fr/node/61?type=desc
https://logiciels.cnes.fr/fr/node/97?type=desc
https://logiciels.cnes.fr/fr/node/75?type=desc
https://cceres.psl.eu/spip.php?rubrique37
http://www.astropy.org/
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://amsat-uk.org/tag/link-budget/
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe

isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/
Satorb_V07_setup.exe

Visualization:

Visualization allow team to communicate internally, to check and validate mission anal-
ysis and scenario and to get pretty communication outputs.

* VTS - https://logiciels.cnes.fr/fr/node/19?type=desc
* Celestia (included in VTS) - https://celestia.fr/
* CNES - IDM-VIEW
Access request must be done to your local supervisor (Access is restricted to Nanostar
Members)

End Of Life:

Nanosatellite sent in LEO should re-enter into the atmosphere in less than 25 years
after the end of operational activity.

* Stela - https://logiciels.cnes.fr/fr/content/stela

Project Management:

Some recommendations for managing your project: work with a versioning system,
often included in a Project Software Management tool that allow efficient and reactive
teamwork... and communicate with any useful means...

* Versioning tool
Subversion (SVN) - https://subversion.apache.org/
or Git - https://git-scm.com/

* Project Software Management tool
GitHub - https://github.com/
SourceForge - https://sourceforge.net/

* Internal communication
Slack - https://slack.com/signin

4.2 Specification for constellation software developments
4.2.1 Mission Analysis

Usage:

27

https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://sourceforge.isae.fr/projects/dcas-soft-espace/repository/raw/supportLight/Satorb_V07_setup.exe
https://logiciels.cnes.fr/fr/node/19?type=desc
https://celestia.fr/
https://logiciels.cnes.fr/fr/content/stela
https://subversion.apache.org/
https://git-scm.com/
https://github.com/
https://sourceforge.net/

The module should allow to:

• set a list of spacecraft, with keplerian parameters or TLE

◦ provide a list of classical orbits (Geostationary, Sun synchronous, Critically inclined,
Sun synchronous, Repeating ground trace, Molniya, Critically inclined, Circular...)

• import existing TLE from Celestrak https://www.celestrak.com/

• set a list of spacecraft constellation (groups of spacecrafts)

• export ephemerids data following CCSDS format of each spacecraft

– in a local file

– in json, through http REST

• calculate visibility windows for ground stations

• calculate eclipse (and penumbra) temporal windows for each spacecraft

• visualize spacecraft’s orbit

– in a 3D view (inertial frame)

– on a planet projected 2D view (including satellite ground track, station visibility
indicator, visibility cone)

• set a minimum elevation parameter for the ground station

• provide coverage estimation for planet observation missions

• all outputs must be available on a REST documented API, in json format

• allow to run and visualize the simulation: play, stop, pause, forward or backward.
Start date and the time step (simulation speed) can be be selected.

• Set orientation vectors to Spacecraft/Stations, Earth centre, Sun, and/or Moon, or
any celestial body center

• export attitude data following CCSDS format for each spacecraft

– in a local file

– in JSON format, through http REST service

Technical proposition:

28

https://www.celestrak.com/

ISAE-SUPAERO JSatorb mission analysis tool may be adapted for such needs. It’s
Open Source https://sourceforge.isae.fr/projects/jsatorb-all and
already contains most of the features required.

JSatOrb is an ISAE-Supaero’s software tool dedicated to orbital calculation and de-
signed for pedagogical purposes, with professional level features outputs. It has been ini-
tiated to find a soft which would fill the gap between local teachers developed tools and
professional tools, exploiting state of the arts algorithms concerning space mechanics cal-
culus. Even if current provided open source libraries are not fully compliant with our peda-
gogical requirements (simplicity, flexibility, multi-platform and ergonomics), they provide
complete and accurate calculus methods that are dedicated to a professional use. However,
GUI part is not the main concern when used by space engineers which only require API
access.

Concretely, JSatorb project is open-source (LPPG v3 license) and under development.
It is inspired from current full-stack implementation methods. Ergonomic and intuitive-
ness are at stack concerning the front-end, which is mainly based on Angular (https:
//angular.io/) and Cesium (https://cesiumjs.org). Efficiency and correct-
ness on calculus are provided by the back-end part, which relies on Orekit (https:
//www.orekit.org/).

Figure 12: Illustration, JSatorb 3D view

Tasks to be achieved:

• test and validation of existing prototype, for each functionalities already developed

• surface coverage features to be developed, tested and validated (very classical prob-
lematic in earth observation mission)

• interplanetary trajectories feature to be developed, tested and validated

29

https://sourceforge.isae.fr/projects/jsatorb-all
https://angular.io/
https://angular.io/
https://cesiumjs.org
https://www.orekit.org/
https://www.orekit.org/

Figure 13: Illustration, 2D planisphere view with satellite traces, ground stations and day-
night frontier visualization

• examples (SSO, geostationary, orbit around Mars...) should be available

• quick-start guide must be provided

• REST API must be formalized and provided

• visualization features should be improved (e.g. more frames)

30

4.2.2 Structure Module

Usage:

The module should allow to:

• build the first version of the 3D structure of the spacecraft and payload

• specify material types

• import already existing 3D structures

Technical proposition:

CNES’s IDM-CIC tool.

31

Figure 14: IDM-CIC excel interface

32

4.2.3 Link Budget Module

Usage:

The module should allow to:

• set the RF parameters for the

– spacecraft

– ground station

– propagation path

– orbital parameters

in both cases:

– uplink

– downlink

• calculate a link-budget according to a BER requirement

• calculate a fade margin

• calculate raw data flow

• calculate useful data flow

Technical proposition:

Luplink project (ISAE-SUPAERO) [Ningaraju, 2018] has provided a set of libraries
(Octave and Python) for basic and advanced calculus for link-budget. Space mechanics
calculus are provided by Celestlab library (a Scilab CNES tool). A proof of concept proto-
type has validated the technical aspect regarding Nanostar global specification for modules
(REST API, modularity, open source...) Light effort would be necessary to provide an
operational module.

Tasks to be achieved:

• test and validation of existing prototype, for each functionalities already developed

• add fade margin calculus

• end the implementation of angular front-end part

• validate all calculus

33

Figure 15: Nanosatellite Spectra project data chain - [Ningaraju, 2018]

4.2.4 Data Budget Module

Usage:

The module should allow to:

• set the useful data flow

• set the visibility windows

• update required on-board storage

• compute the data budget

Technical proposition:

Luplink project (ISAE-SUPAERO) [Ningaraju, 2018] has provided a set of libraries
(Octave and Python) for basic and advance calculus for link-budget, which can be easily
extended for data budget calculation. A proof of concept prototype has validated the tech-
nical aspect regarding Nanostar global specification for modules (REST API, modularity,
open source...) Light effort would be necessary to provide an operational module.

Tasks to be achieved:

34

• test and validation of existing prototype, for each functionalities already developed

• end the implementation of angular front-end part

• validate all calculus

4.2.5 Thermal Architecture

Cf. UM’s specification document: "NANOST-REQ-045_GT2 IDM-CIC_Thermica specs
from UM_v2.0.docx", available on the Aerospace Valley sharepoint. We must take care of
general specification that must be respected by all modules.

Subcontractors possibilities:

Subcontractor: Clever Age
Justifiction: developpers of IDM-CIC Excel Plugin
contact: <gchaffarod@clever-age.com>

Subcontractor: Airbus
Justifiction: developpers of Systema-thermica
contact:
<http://www.systema.airbusdefenceandspace.com/support.html>

4.2.6 Interface with IDM-CIC

Usage:

The module should allow to:

• provide whole or partial data values from IDM-CIC file for third party software

• update whole or partial data values in IDM-CIC file for third party software

• provide a front-end that make this manipulation available

Technical proposition:

• provide a library providing a REST API for IDM-CIC model (probably in .NET)

Tasks to be achieved:

35

http://www.systema.airbusdefenceandspace.com/support.html

The module should allow to:

• provide a REST API to manipulate IDM-CIC files:

– access to stored data

– modify stored data

– create IDM-CIC from NSS database

– update NSS database from IDM-CIC files

• provide an Angular front-end GUI

Subcontractors possibilities:

Subcontractor: Clever Age
Justification: developers of IDM-CIC (Excel Plugin and IDM .net library)
Contact: <gchaffarod@clever-age.com>

Subcontractor: Virtual It 11

Justification: developers of IDM-VIEW

4.2.7 Radiation budget module

Usage:

The module should allow to:

• read an OEM file

• provide an estimation of amount of radiation received by the spacecraft

◦ read an AEM file

◦ read a simplified 3D model of the spacecraft nodes, in the same idea as Thermal
modeling (Cf. section 4.2.5)

◦ calculate cumulated radiation received by each nodes

◦ calculate required shielding for each nodes

Technical proposition:
11https://virtual-it.fr/en/portfolio-posts/idm-view-cnes/

36

https://virtual-it.fr/en/portfolio-posts/idm-view-cnes/

• A qualitative estimation is a good start

• Artenum work with Onera lab on Open Source library

• Fastrad12 software may offer a solution depending on license usage

Tasks to be achieved:

• Define the development strategy

Subcontractors possibilities:

Subcontractor: Artenum 13

Justification: Scientific computing, library open source on radiations

Subcontractor: Trad 14

Justification: Developpers of Fastrad, 3D radiation software

4.2.8 Preliminary ADCS sizing

Usage:

The module should allow to:

• read an OEM file

• read an Activity Profile file

• read an Activity Profile REST API (Cf. section 4.2.9)

• read a formal description of equipment (inertial wheels, magnetorquer...)

• provide a validation of mission feasibility in term of attitude control

• provide an attitude profile (AEM) file

◦ read a structural model (Cf. section 4.2.2)

◦ connect to a visualization broker such as VTS (Cf. section 4.2.9)

Technical proposition:
12http://www.trad.fr/
13http://www.artenum.com/EN/index.html
14http://www.trad.fr/

37

http://www.trad.fr/
http://www.artenum.com/EN/index.html
http://www.trad.fr/

◦ ISAE-SUPAERO’s PILIA internal tool can be made available

Tasks to be achieved:

• refer to the activity profile format (Cf. section 4.2.9)

• check mission requirements against material characteristics (required precision for
attitude control, couple required for wheel desaturation, etc.)

• provide a attitude control model (instantaneous idealistic world, simple model of
each element to provide a simulation)

4.2.9 Activity profile management

Usage:

The module should allow the user to:

• define different activity profiles for a same mission

• define the different modes of the spacecraft, and associated parameters

• allow to update dynamically parameters of these two types of data (e.g power con-
sumption may depend of the mode, etc.)

• provide tools to visualize these profiles in an efficient and ergonomic way

Technical proposition:

• should be totally compatible with VTS broker (TCP sockets connections)

• CSV formatted files should be provided

• IDM-CIC is already taking into account mode definition

Tasks to be achieved:

• formalize an activity profile - list of couple (time, type of activity)

• formalize satellite mode data

• define an angular web interface making easy to describe an activity profile

• define an angular web interface making easy to describe the different satellite modes

• implement it in Angular

• provide a library implementing functionality for manipulating it

• provide a REST API according to this library

38

4.2.10 EPS module

Usage:

The module should allow to:

• read an activity profile

• formalize a model of consumption according to satellite mode - list of couple (mode,
data)

• define an angular web interface making easy to describe a model of power consump-
tion according to satellite mode

• read a consumption model (power consumption according to mode)

• read material specification (characteristic of solar cells used, of battery power used...)

• read an AEM file

• read an OEM file

• propose a format to describe a model of power generation for solar cells

• read a model of power generation for solar cells

◦ read a solar flux model

• provide a power budget (on each time step, power production minus power consump-
tion)

• provide DoD (Depth of Discharge) budget (on each time step, DoD value)

• compute estimated number of batteries required (according to battery characteristic,
activity profile and solar cells number and characteristic)

◦ compute estimated number of solar cells required (according to solar cells character-
istic, activity profile and solar cells number and characteristic)

Technical proposition:

ISAE-SUPAERO Nanopower mission analysis tool may be adapted for such needs: a
Generic Cubesat Power Simulator [Perea, 2019].

Tasks to be achieved:

39

Power Subsystem

Properties:
- solar angle matrix
- eclipse indicator matrix
- consumption dictionary
- time array
- EPS
- battery
- mission plan
- time now
- panel definition

- total no. of panels
- total no. of cells
- temperature array
- solar arrangement
- extra modes
- solar cell
- diode
- software bat mode
- mode list

- max cells array
- no. of channels
- destroyed cells
- in voltage now
- converters
- pv converters
- margin
- required power now
- input power now

Methods:
- __init__
- set destroyed cells
- find required power
- find input power
- set panel definition
- organise

- get pVLine object
(MPPT)
- update battery
modes
- get pVLine object
(constant voltage)

Battery

Properties:
- accumulator
- parallel accumulator cells
- series accumulator cells
- temperature array
- maximum theorethical capacity
of an accumulator
- total cycles applied already
- mean DOD from previous use
- mean SOS from previous use

- age of battery
- SOC
- mean temp from previous use
- accumulator internal
impedance
- datasheets
- power in
- voltage
- current in

Methods:- __init__
- accumulator set up
- battery tick

- find voltage
- get current
- get SOC

Single Accumulator

Properties:
- discharge file
- SOC
- age
- internal impedance
- mean Temp
- total cycles

- mean DOD
- Initial maximum
capacity of accumulator
- math model
- voltage
- current

- maximum capacity
of accumulator
- in Charge
- last max SOC
- temp
- mean SOC

Methods:

- __init__
- find V from SOC

- accumulator tick
- find Cm

- math tau calc
- find SOC

PvLine:
Properties:

- series cells in
solar arrangement
- temperature
- destroyed cells

- parallel sets in
solar arrangement
- diode
- eclipse indicator

- current now
- power now
- solar cell
- solar angle

Diode
Properties:

- reverse current
- voltage

Janus Solar Cell

Methods:

Methods:

Methods:
Methods:

- __init__
- __init__

Properties:

Properties:

Properties:Properties:
- cell T mid
- cell V max
- cell I max
- cell I optimum
- cell V optimum

-

-

dImax

dT
dVmax

dT

-

-

dIoptimum

dT
dVoptimum

dT

- calculate current

Methods:

- __init__

EPS

- Battery V max
- power condition
- MPPT increment

- __init__

Extra Battery Mode

- hardware_yn
- entry condition
- exit condition
- input_yn

- required effect
- input effect
- state
- name

- extra effect norm
- extra effect itself
- require_yn
- importance

- __init__

- pv efficiency data
- input power data
- output power data

Converter:

- efficiency
- efficiency data
- current data

- I data (for I vs V)
- V data for (for I
vs V data)

Methods:

- __init__ - interpolate for efficiency

Pv Converter:
Properties:

Methods:
- __init__
- get efficiency from
input power
- get efficiency from
output power

- tickonwards
- create single
mode list
- set converters
- set pv
converters

Figure 16: Structure of the Generic Cubesat Power Simulator [Perea, 2019]

40

• test and validation of existing prototype, for each functionalities already developed

• add fade margin calculus

• end the implementation of angular front-end part

• validate all calculus

• structure configuration file and call

• take into account penumbra model in code (optimization)

◦ conf.ini management:

– option to use a local propagator

– unit test to do

◦ fractions on power consumption

◦ 3 modes on attitude control:

– AEM file

– Random rotation

– emulation of ideal attitude control (celestlab)

◦ structure of solar cell to be defined by user

◦ service to get max eclipse duration

◦ output du power budget

◦ output DoD over time

◦ get number of necessary accumulators (i.e. DoD along activity profile)

◦ check if number of solar cell is consistent

5 Annex A: Input / Output format proposition

Notations:
(s): well defined and operationnaly used standard
(*): no standard defined yet, or not used in real life.
(^): single value, SI unit

========
= SCAO = IST module + interface (in dev)
========

41

IN
- OEM file (quaternions / time <CCSDS>) (s)
- MEM file (Activity profile, time dependant - CIC format) (s)
- MPM file (Mode definition, time independant - CIC format) (s)
- EDS files - (hw and sw specification) (*)

OUT
- AEM files (spacecraft, solar arrays, etc.) (s)
- Attitude controle feasability (^)

=======
= LOS = - Stella (available) - no interface
=======
IN:
- Orbital parameters (*)
- Structure (*)
- Date (year) (^)
OUT:
- OK/KO (^)

===============
= Link-budget = - Dosa + interface (in dev)
===============
IN:
- Data flow (BER) (^)
- Orbital parameters (*)
- EDS files - (hw and sw specification) (*)

OUT:
- margins up/down (^)
- Raw Data Flow up/down (^)
- Usefull Data Flow up/down (^)

=============
= DataBudget = - Dosa + interface (in dev)
==============
IN:
- Usefull Data Flow (^)
- Visibility Window (*)
- Ground Stations List (*)

42

- On-board storage capacity (^)

OUT:
-available data flow (up) (^)
-available data flow (down) (^)

===================
= Mission Analysis - JSatorb + interface (in dev)
===================
IN:
- Orbital parameters (*)
- Ground Stations List (*)

OUT:
- OEM file (s)
- Visibility Window (*)
- Eclipses (*)

=============
= Structure = - IDM-CIC/Sketchup (available) + interface - INPB (in dev)
=============
IN:
- Number of Units (^)
OUT:
- 3D structural model (*)

===============
= Mass Budget = - IDM-CIC (available) + interface - INPB (in dev)
===============
IN:
- 3D structural model (*)
OUT:
- Mass Budget (^)

===============
= Activity profile - UC3M module + interface (in dev)
===============
IN:
- user inputs (Payload details/cosntraints) (*)

43

OUT:
- MEM file (Activity profile, time dependant - CIC format) (s)
- MPM file (Mode definition, time independant - CIC format) (s)

===============
= Power Budget = Nanopower + interface (in dev)
===============
IN:
- MEM file (Activity profile, time dependant - CIC format) (s)
- MPM file (Mode definition, time independant - CIC format) (s)
- EOM file
- AEM files (spacecraft + solar arrays)

OUT:
- Power Budget (^)
- Consumption profile for each equippment (*)
- Global consumption profile (*)
- Battery Level (*)

=======================
= Disipation Budget = UM module + interface (in dev)
=======================
IN:
- Node model (*)
- AEM file (s)
- OEM file (s)
- Eclipses (*)
- EDS files - (hw and sw specification) (*)

USED INTERNAL DATA:
- Solar flux received (*)

OUT:
- Temperature profile of each node/equipment (*)
- Temp min/max (*)

===============
= Radiation Budget = UPM module + interface (dev)
===============
IN:
- Orbital parameters (*)

44

OUT:
- Radiation received (*)

======================
= Visual tools / COM = - IDM view - VTS (available) - interface (?)
======================
IN:
- AEM file (s)
- OEM file (s)
- 3D structural model (*)
OUT:
- Pretty views (^)

============
= Launcher = optional
============
IN:
- Mass Budget (^)
- Ppod type (^)
- Orbital parameters (*)
- Date (year) (^)

OUT:
- selected launcher (^)
- launcher constraints (*)

References
[Braukhane and Bieler, 2014] Braukhane, A. and Bieler, T. (2014). The dark side of con-

current design: A story of improvisations, workarounds, nonsense and success. In 6th
International Conference on Systems and Concurrent Engineering for Space Applica-
tions, Stuttgart, Germany, pages 8–10.

[Di Domizio and Gaudenzi, 2008] Di Domizio, D. and Gaudenzi, P. (2008). A model for
preliminary design procedures of satellite systems. Concurrent Engineering, 16(2):149–
159.

[DLR, 2019] DLR (2019). Virtual satellite. https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-
5135/8645_read-8374/.

[ESA, 2019] ESA (2019). Ocdt. https://ocdt.esa.int.

[European Cooperation for Space Standardization, 2019] European Cooperation for
Space Standardization (2019). Ecss-etm-10-25a. https://ecss.nl/.

45

[Le Gal and Lopes, 2016] Le Gal, J.-L. and Lopes, P. R. (2016). Idm-cic.
https://www.clever-age.com/fr/case-studies/cnes-une-application-de-modelisation-3d/.

[Ningaraju, 2018] Ningaraju, P. (2018). Rf simulation and link analysis tool for csut. Tech-
nical report, ISAE-SUPAERO.

[Oberto et al., 2005] Oberto, R. E., Nilsen, E., Cohen, R., Wheeler, R., DeFlono, P., and
Borden, C. (2005). The nasa exploration design team: Blueprint for a new design
paradigm. In Aerospace Conference, 2005 IEEE, pages 4398–4405. IEEE.

[Perea, 2019] Perea, C. A. (2019). Generic cubesat power simulator. Technical report,
ISAE-SUPAERO.

[Rheagroup, 2019] Rheagroup (2019). Cdp4. https://www.rheagroup.com/fr/news/cdp4-
open-source-community-edition.

[Schreiber and Carley, 2005] Schreiber, C. and Carley, K. (2005). Ineffective organiza-
tional practices at nasa: A dynamic network analysis. Available at SSRN 2726789.

[Valispace, 2019] Valispace (2019). Valispace. https://www.valispace.com/.

[Vergnes, 2015] Vergnes, N. (2015). Bases de données graphes : comparai-
son de NEO4J et OrientDB. Conservatoire National des Arts et Métiers
https://www.irit.fr/ Thierry.Millan/MemoiresENG221/Nicolas_vergnes.pdf.

46

	Introduction
	Context: Nanostar Project
	Context: Work package 2
	Nanostar Software Suite Goals

	Nanostar Software Suite Overview
	NSS concept: One Software Suite to Bind Them All
	Requirements Overview
	Requirements typology
	Global requirements
	Expected for each module of the constellation
	Coordination Tasks
	Deliveries

	Development team
	Available human resources by institution
	Sub-contractors available budgets

	Development plan - NSS v1
	Some key dates
	Workplan
	Current Overview

	NSS-Core
	Respect of existing standards
	NSS-Core Overview
	Nanospace functionalities
	Software Architecture description
	Prototyping and technical notes
	Data model
	User interface

	Domain specific software constellation
	Existing materials
	Existing standards
	Existing and operational software: NSS v0

	Specification for constellation software developments
	Mission Analysis
	Structure Module
	Link Budget Module
	Data Budget Module
	Thermal Architecture
	Interface with IDM-CIC
	Radiation budget module
	Preliminary ADCS sizing
	Activity profile management
	EPS module

	Annex A: Input / Output format proposition

