Wiki » History » Version 14

LANVIN, Jean-baptiste, 12/13/2015 11:29 PM

1 13 LANVIN, Jean-baptiste
[[Introduction]]
2 2 LANVIN, Jean-baptiste
[[State of Art of the Orbit Propagators]]
3 14 LANVIN, Jean-baptiste
[[The Two-Lines Element]]
4 2 LANVIN, Jean-baptiste
5 2 LANVIN, Jean-baptiste
h2. The Two-Lines Element
6 2 LANVIN, Jean-baptiste
7 2 LANVIN, Jean-baptiste
Once the orbit propagator is chosen, some datas are required at the input in order to calculate the satellite’s position. These datas are stored within the Two Lines Element (TLE). They can be found on the internet but it is important to check if they are up to date whereas precision will be lost in the calculation. TLE are provided by NORAD (North American Aerospace Defence Command).
8 2 LANVIN, Jean-baptiste
.
9 2 LANVIN, Jean-baptiste
+Here is the TLE format (2 lines of 69 characters) :+ 
10 2 LANVIN, Jean-baptiste
<pre>
11 2 LANVIN, Jean-baptiste
AAAAAAAAAAAAAAA  b.b  c.c  d.d  e.e  f  RRR         KM x km
12 2 LANVIN, Jean-baptiste
1 gggggU hhiiijjj kklll.llllllll +mmmmmmmm +nnnnn-n  ooooo-o p qqqqr
13 2 LANVIN, Jean-baptiste
2 ggggg sss.ssss ttt.tttt uuuuuuu vvv.vvvv ddd.dddd xx.xxxxxxxxyyyyyz
14 2 LANVIN, Jean-baptiste
</pre>
15 2 LANVIN, Jean-baptiste
16 2 LANVIN, Jean-baptiste
+Line 0 description :+
17 2 LANVIN, Jean-baptiste
18 2 LANVIN, Jean-baptiste
AAAAAAAAAAAAAAA : name of the satellite
19 2 LANVIN, Jean-baptiste
b.b : length (meters)
20 2 LANVIN, Jean-baptiste
c.c : width (meters)
21 2 LANVIN, Jean-baptiste
d.d : height (meters)
22 2 LANVIN, Jean-baptiste
e.e : standard magnitude
23 2 LANVIN, Jean-baptiste
f : standard magnitude determination method (d = calculation ; v = observation)
24 2 LANVIN, Jean-baptiste
RRR : equivalent radar section (meter square)
25 2 LANVIN, Jean-baptiste
KM : altitude at apogee
26 2 LANVIN, Jean-baptiste
km : altitude at perigee
27 2 LANVIN, Jean-baptiste
Remark : Most of the time there is no line 0.
28 2 LANVIN, Jean-baptiste
29 2 LANVIN, Jean-baptiste
+Line 1 description :+
30 2 LANVIN, Jean-baptiste
31 2 LANVIN, Jean-baptiste
ggggg : Number within the U. S. Space Command (NORAD)
32 2 LANVIN, Jean-baptiste
U : Classification (here U means Unclassified = not secret)
33 2 LANVIN, Jean-baptiste
hh : Last two numbers of the lunching year
34 2 LANVIN, Jean-baptiste
iii : lunch number of the year
35 2 LANVIN, Jean-baptiste
jjj : one to letters pointing a piece of the lunch
36 2 LANVIN, Jean-baptiste
kk : two last numbers of the year when these elements have been estimated
37 2 LANVIN, Jean-baptiste
lll.llllllll : day and fraction of the day when these elements have been estimated
38 2 LANVIN, Jean-baptiste
+ mmmmmmmm : half of the first derivative of the mean movement (revolution per day square), this stands for the acceleration and deceleration of the satellite
39 2 LANVIN, Jean-baptiste
+ nnnnn-n : sixth of the second derivative of the mean movement (revolution per day cube)
40 2 LANVIN, Jean-baptiste
ooooo-o : pseudo balistic coefficient, used by the SGP4 orbit propagator (1/terrestrial radius)
41 2 LANVIN, Jean-baptiste
p : type of ephemeris
42 2 LANVIN, Jean-baptiste
qqqq : number of this set of elements
43 2 LANVIN, Jean-baptiste
r : cheksum (modulo 10)
44 2 LANVIN, Jean-baptiste
45 2 LANVIN, Jean-baptiste
+Line 2 description :+
46 2 LANVIN, Jean-baptiste
47 2 LANVIN, Jean-baptiste
ggggg :  Number within the U. S. Space Command (NORAD)
48 2 LANVIN, Jean-baptiste
sss.ssss : orbit inclination with respect to the terrestrial equator (degrees)
49 2 LANVIN, Jean-baptiste
ttt.tttt : right ascension of the orbit ascending node (degrees)
50 2 LANVIN, Jean-baptiste
uuuuuuu : excentricity
51 2 LANVIN, Jean-baptiste
vvv.vvvv : perigee argument (degrees)
52 2 LANVIN, Jean-baptiste
ddd.dddd : mean anomaly (degrees)
53 2 LANVIN, Jean-baptiste
xx.xxxxxxxx : mean movement (revolution per day)
54 2 LANVIN, Jean-baptiste
yyyyy : number of revolution when these elements have been estimated
55 2 LANVIN, Jean-baptiste
z : cheksum (modulo 10)
56 2 LANVIN, Jean-baptiste
57 2 LANVIN, Jean-baptiste
Here is an example of a TLE for the NOAA-19 : 
58 2 LANVIN, Jean-baptiste
<pre>
59 2 LANVIN, Jean-baptiste
1 33591U 09005A   15310.52866608  .00000161  00000-0  11260-3 0  9997
60 2 LANVIN, Jean-baptiste
2 33591  99.0081 260.8643 0014724 126.2184 234.0350 14.11998019347577
61 2 LANVIN, Jean-baptiste
</pre>
62 2 LANVIN, Jean-baptiste
63 2 LANVIN, Jean-baptiste
Here is some helpful remarks to interpret the TLE’s values :
64 2 LANVIN, Jean-baptiste
* concerning the day and fraction of the day, also called epoch, when these elements have been estimated at line 1, the first two numbers are the last numbers of the year (15 stands for 2015 in the example). The next three numbers designate the number of the day in the year (310 represents November the 6th). Then the last numbers are the fraction of the day. By multiplying this decimal number by 1440 (the number of minutes in one day), we obtain the time of the day when these elements have been determined. This timeStamp reprensents the epoch. It is the moment where the satellite arrives at the ascending node. 
65 2 LANVIN, Jean-baptiste
* When there is a « + » before the values it means that these values can be either positive or negative
66 2 LANVIN, Jean-baptiste
* Concerning the excentricity at line 2, the decimal is assumed (0014724 means 0.0014724 in the example)
67 2 LANVIN, Jean-baptiste
* Concerning the pseudo-balistic coefficent at line 1, the decimal is assumed and the last integer represents the minus values at the power of ten (11260-3 stands for 0.11260 x 10^-3)
68 2 LANVIN, Jean-baptiste
69 4 DE GENDRE, Raphaëlle
It is even more important to have updated TLEs for satellite with orbit lower than 350 km and if it is often subject to manover such as the ISS (International Spatial Station)
70 4 DE GENDRE, Raphaëlle
71 4 DE GENDRE, Raphaëlle
72 4 DE GENDRE, Raphaëlle
73 4 DE GENDRE, Raphaëlle
74 4 DE GENDRE, Raphaëlle
h2.  Distance elevation and azimuth calculation
75 4 DE GENDRE, Raphaëlle
76 4 DE GENDRE, Raphaëlle
77 4 DE GENDRE, Raphaëlle
78 4 DE GENDRE, Raphaëlle
79 4 DE GENDRE, Raphaëlle
h3.    ECI coordinates
80 4 DE GENDRE, Raphaëlle
81 4 DE GENDRE, Raphaëlle
82 4 DE GENDRE, Raphaëlle
83 4 DE GENDRE, Raphaëlle
84 4 DE GENDRE, Raphaëlle
85 4 DE GENDRE, Raphaëlle
The coordinates of the satellite given by the propagator are given in the Earth-Centered Inertial (ECI) coordinate system . This system is a cartesian coordinate system whose origin is located at the center of the earth (at the center of mass to be precise). The z axis is orthogonal to the equatorial plane pointing north, the x axis is pointing towards the vernal equinox, and the y axis is such that the system remains a direct orthogonal system The x and y axis are located in the equatorial plane as shown in the following figure.
86 4 DE GENDRE, Raphaëlle
87 4 DE GENDRE, Raphaëlle
88 5 DE GENDRE, Raphaëlle
!ECI.jpg!
89 4 DE GENDRE, Raphaëlle
90 4 DE GENDRE, Raphaëlle
This system is convenient to represent the positions and velocities of space objects rotating around the earth considering firstly that the origin of the system is the center of mass of the earth, and that the system does not rotate with the earth. Indeed, "inertial" means that the coordinate system is not accelerating, therefore not rotating: considering the way the three axis are defined, the system is fixed in space regarding the stars.
91 4 DE GENDRE, Raphaëlle
The problem here is that our ground is station is located on the surface of the earth, so its coordinates are given in the geodetic coordinate system, which is obviously a system that is rotating with the earth.
92 4 DE GENDRE, Raphaëlle
We had therefore two options: either calculate the coordinates of the ground station in the ECI coordinate system, or calculate the coordinates of the satellite in the geodetic coordinate system. We chose the first option .
93 4 DE GENDRE, Raphaëlle
94 12 LANVIN, Jean-baptiste
h3. θ(τ)calculation
95 4 DE GENDRE, Raphaëlle
96 7 LANVIN, Jean-baptiste
	The main problem to go from the geodetic system to the ECI system is to calculate the angle between the observer meridian (longitude) and the vernal equinox direction. This angle, also called the local sidereal time depends on the star and not on the sun and that is why it is a bit touchy to calculate. For our implementation and tests, we relied on the algorithms and example given in the magazine _Satellite Time_ ,in the column Orbital Coordinate Systems, Part II. θ(τ) is actually define as the sum between the antenna east longitude and the greenwich sidereal time GST, which is the angle between the greenwich meridian and the vernal equinox that we will note  θg(τ).
97 7 LANVIN, Jean-baptiste
θg(τ)can be calculated using the formula:
98 7 LANVIN, Jean-baptiste
99 10 LANVIN, Jean-baptiste
θg(τ) = θg(0h) + ωe·Δτ (1)
100 1 LANVIN, Jean-baptiste
101 7 LANVIN, Jean-baptiste
where Δτ is the number of seconds elapsed since 0h at the time of the calculation and ωe = 7.29211510 × 10-5 radians/second is the Earth's rotation rate. θg(0h) is the GST calculated at 0h that day and it is given as
102 8 LANVIN, Jean-baptiste
103 10 LANVIN, Jean-baptiste
θg(0h) = 24110.54841 + 864018.812866 Tu + 0.093104 Tu2 - 6.2 × 10-6 Tu3 (2)
104 8 LANVIN, Jean-baptiste
where Tu = du/36525 and du is the number of days of Universal Time elapsed since the julian date 2451545.0 (2000 January 1, 12h UT1). Therefore, to calculate θg(τ), the first thing we need is the julian date of the day, which we can deduce from the julian date of the year as follow:
105 8 LANVIN, Jean-baptiste
106 8 LANVIN, Jean-baptiste
JD = Julian_Date_of_Year() + Number of day since the first of January;
107 1 LANVIN, Jean-baptiste
108 8 LANVIN, Jean-baptiste
This calculation is done in the VI julian date.vi where the calculation of the Julian date of the year is done using the Meeus' approach.
109 8 LANVIN, Jean-baptiste
110 10 LANVIN, Jean-baptiste
Once we had the Julian date, we could calculate du and therefore Tu, and that way we calculated θg(0h) using (2). From there, we were able to calculate θg(τ) using (1) and since we know the east longitude of the antenna we obtained θ(τ). Those calculations are done in the VI tetag.vi.
111 9 LANVIN, Jean-baptiste
112 9 LANVIN, Jean-baptiste
113 6 LANVIN, Jean-baptiste
114 6 LANVIN, Jean-baptiste
115 1 LANVIN, Jean-baptiste
116 12 LANVIN, Jean-baptiste
h3. Geodetic to ECI conversion
117 11 LANVIN, Jean-baptiste
118 11 LANVIN, Jean-baptiste
Once we had the local sidereal time, we were able to make the change of system using the following formulas:
119 11 LANVIN, Jean-baptiste
120 11 LANVIN, Jean-baptiste
x=Rcos θ
121 11 LANVIN, Jean-baptiste
y=Rsin θ
122 11 LANVIN, Jean-baptiste
z=Re sin φ
123 1 LANVIN, Jean-baptiste
124 1 LANVIN, Jean-baptiste
where Re = 6378.135 km, φ is the latitude of the antenna, θ is the local sidereal time and R = Re cos φ
125 1 LANVIN, Jean-baptiste
This is done in the VI, Antenna coordinates ECI.vi.
126 12 LANVIN, Jean-baptiste
127 12 LANVIN, Jean-baptiste
h3. Distance
128 12 LANVIN, Jean-baptiste
129 12 LANVIN, Jean-baptiste
h3. Elevation and azimuth
130 12 LANVIN, Jean-baptiste
131 12 LANVIN, Jean-baptiste
h2. Link budget