Wiki » History » Version 23

DE GENDRE, Raphaëlle, 12/14/2015 12:03 PM

1 22 DE GENDRE, Raphaëlle
2 13 LANVIN, Jean-baptiste
[[Introduction]]
3 22 DE GENDRE, Raphaëlle
4 2 LANVIN, Jean-baptiste
[[State of Art of the Orbit Propagators]]
5 14 LANVIN, Jean-baptiste
[[The Two-Lines Element]]
6 2 LANVIN, Jean-baptiste
7 2 LANVIN, Jean-baptiste
8 4 DE GENDRE, Raphaëlle
h2.  Distance elevation and azimuth calculation
9 4 DE GENDRE, Raphaëlle
10 4 DE GENDRE, Raphaëlle
11 4 DE GENDRE, Raphaëlle
12 4 DE GENDRE, Raphaëlle
13 4 DE GENDRE, Raphaëlle
h3.    ECI coordinates
14 4 DE GENDRE, Raphaëlle
15 4 DE GENDRE, Raphaëlle
16 4 DE GENDRE, Raphaëlle
17 4 DE GENDRE, Raphaëlle
18 4 DE GENDRE, Raphaëlle
19 4 DE GENDRE, Raphaëlle
The coordinates of the satellite given by the propagator are given in the Earth-Centered Inertial (ECI) coordinate system . This system is a cartesian coordinate system whose origin is located at the center of the earth (at the center of mass to be precise). The z axis is orthogonal to the equatorial plane pointing north, the x axis is pointing towards the vernal equinox, and the y axis is such that the system remains a direct orthogonal system The x and y axis are located in the equatorial plane as shown in the following figure.
20 4 DE GENDRE, Raphaëlle
21 4 DE GENDRE, Raphaëlle
22 4 DE GENDRE, Raphaëlle
!ECI.jpg!
23 5 DE GENDRE, Raphaëlle
24 4 DE GENDRE, Raphaëlle
This system is convenient to represent the positions and velocities of space objects rotating around the earth considering firstly that the origin of the system is the center of mass of the earth, and that the system does not rotate with the earth. Indeed, "inertial" means that the coordinate system is not accelerating, therefore not rotating: considering the way the three axis are defined, the system is fixed in space regarding the stars.
25 4 DE GENDRE, Raphaëlle
The problem here is that our ground is station is located on the surface of the earth, so its coordinates are given in the geodetic coordinate system, which is obviously a system that is rotating with the earth.
26 4 DE GENDRE, Raphaëlle
We had therefore two options: either calculate the coordinates of the ground station in the ECI coordinate system, or calculate the coordinates of the satellite in the geodetic coordinate system. We chose the first option .
27 1 LANVIN, Jean-baptiste
28 22 DE GENDRE, Raphaëlle
h3. θ(τ) calculation
29 12 LANVIN, Jean-baptiste
30 21 DE GENDRE, Raphaëlle
The main problem to go from the geodetic system to the ECI system is to calculate the angle between the observer meridian (longitude) and the vernal equinox direction at the time of interest τ. This angle, also called the local sidereal time is a measure of time that depends on the stars, and not on the sun and that is why it is a bit touchy to calculate. For our implementation and tests, we relied on the algorithms and example given in the magazine _Satellite Times_ ,in the column Orbital Coordinate Systems, Part II. θ(τ) is actually defined as the sum between the antenna east longitude and the greenwich sidereal time GST, which is the angle between the greenwich meridian and the vernal equinox that we will note  θg(τ).
31 7 LANVIN, Jean-baptiste
θg(τ)can be calculated using the formula:
32 1 LANVIN, Jean-baptiste
33 16 DE GENDRE, Raphaëlle
<pre>
34 1 LANVIN, Jean-baptiste
θg(τ) = θg(0h) + ωe·Δτ (1)
35 16 DE GENDRE, Raphaëlle
</pre>
36 1 LANVIN, Jean-baptiste
37 1 LANVIN, Jean-baptiste
38 16 DE GENDRE, Raphaëlle
where Δτ is the number of seconds elapsed since 0h at the time of the calculation τ and ωe = 7.29211510 × 10-5 radians/second is the Earth's rotation rate. θg(0h) is the GST calculated at 0h that day and it is given as:
39 16 DE GENDRE, Raphaëlle
40 16 DE GENDRE, Raphaëlle
<pre>
41 1 LANVIN, Jean-baptiste
θg(0h) = 24110.54841 + 864018.812866 Tu + 0.093104 Tu2 - 6.2 × 10-6 Tu3 (2)
42 16 DE GENDRE, Raphaëlle
</pre>
43 16 DE GENDRE, Raphaëlle
44 8 LANVIN, Jean-baptiste
where Tu = du/36525 and du is the number of days of Universal Time elapsed since the julian date 2451545.0 (2000 January 1, 12h UT1). Therefore, to calculate θg(τ), the first thing we need is the julian date of the day, which we can deduce from the julian date of the year as follow:
45 1 LANVIN, Jean-baptiste
46 17 DE GENDRE, Raphaëlle
<pre>
47 22 DE GENDRE, Raphaëlle
JD = Julian_Date_of_Year() + Number of day since the first of January
48 17 DE GENDRE, Raphaëlle
</pre>
49 1 LANVIN, Jean-baptiste
50 17 DE GENDRE, Raphaëlle
51 8 LANVIN, Jean-baptiste
This calculation is done in the VI julian date.vi where the calculation of the Julian date of the year is done using the Meeus' approach.
52 1 LANVIN, Jean-baptiste
53 18 DE GENDRE, Raphaëlle
Once we had the Julian date, we could calculate du and therefore Tu, and that way we calculated θg(0h) using (2). From there, we were able to calculate θg(τ) using (1) and since we know the east longitude of the antenna, we obtained θ(τ) by a simple sum. Those calculations are done in the VI tetag.vi where θ(τ) is calculated in radians.
54 9 LANVIN, Jean-baptiste
55 9 LANVIN, Jean-baptiste
56 6 LANVIN, Jean-baptiste
57 6 LANVIN, Jean-baptiste
58 1 LANVIN, Jean-baptiste
59 12 LANVIN, Jean-baptiste
h3. Geodetic to ECI conversion
60 11 LANVIN, Jean-baptiste
61 1 LANVIN, Jean-baptiste
Once we had the local sidereal time, we were able to make the change of system using the following formulas:
62 11 LANVIN, Jean-baptiste
63 16 DE GENDRE, Raphaëlle
<pre>
64 11 LANVIN, Jean-baptiste
x=Rcos θ
65 1 LANVIN, Jean-baptiste
y=Rsin θ
66 11 LANVIN, Jean-baptiste
z=Re sin φ
67 16 DE GENDRE, Raphaëlle
</pre>
68 1 LANVIN, Jean-baptiste
69 1 LANVIN, Jean-baptiste
where Re = 6378.135 km, φ is the latitude of the antenna, θ is the local sidereal time and R = Re cos φ
70 18 DE GENDRE, Raphaëlle
Those calculations are done in the VI _Antenna coordinates ECI.vi_ and x,y,and z are in kilometers.
71 1 LANVIN, Jean-baptiste
72 1 LANVIN, Jean-baptiste
h3. Distance
73 16 DE GENDRE, Raphaëlle
74 18 DE GENDRE, Raphaëlle
Now that we had the coordinates of the antenna in the ECI coordinate system, and since the propagator gives us the coordinates of the satellite, the distance was pretty trivial to calculate. Indeed, as we said before, the ECI coordinate system is a cartesian system, and therefore the distance between two points A(x,y,z) and B(x',y',z') is defined by:
75 1 LANVIN, Jean-baptiste
76 17 DE GENDRE, Raphaëlle
<pre>
77 1 LANVIN, Jean-baptiste
d= sqrt((x-x')²+(y-y')²+(z-z')²)
78 17 DE GENDRE, Raphaëlle
</pre>
79 17 DE GENDRE, Raphaëlle
80 18 DE GENDRE, Raphaëlle
We used those formula to calculate the distance satellite antenna in the VI distance.vi, which is very important to know for the link budget (for the free space loss) as we will see after.
81 1 LANVIN, Jean-baptiste
   
82 16 DE GENDRE, Raphaëlle
h3. Elevation and azimuth
83 18 DE GENDRE, Raphaëlle
84 23 DE GENDRE, Raphaëlle
 The elevation and the azimuth are very important to know as well in order to analyse the satellite link, because if the elevation is too low (below 10°) it is not even worth calculating the link budget because the communication cannot be settled.
85 19 DE GENDRE, Raphaëlle
 The first step for this calculation is to calculate the range vector r, which is defined by:
86 19 DE GENDRE, Raphaëlle
87 19 DE GENDRE, Raphaëlle
<pre>
88 19 DE GENDRE, Raphaëlle
[rx, ry, rz] = [xs - xa, ys - ya, zs - za].
89 19 DE GENDRE, Raphaëlle
(xa,ya,za) being the antenna ECI coordinates and (xs,ys,zs) the satellite ECI coordinates
90 19 DE GENDRE, Raphaëlle
</pre>
91 19 DE GENDRE, Raphaëlle
92 21 DE GENDRE, Raphaëlle
But r is in the ECI coordinate system which is not adapted for the elevation and the azimuth calculation. Therefore, we had to make another change of coordinates from the ECI to the Topocentric-Horizon Coordinate System that is defined in the figure below. 
93 19 DE GENDRE, Raphaëlle
94 1 LANVIN, Jean-baptiste
!Topocentric-Horizon.jpg!
95 20 DE GENDRE, Raphaëlle
96 1 LANVIN, Jean-baptiste
In the figure, θ is the local sidereal time, and φ is the latitude of the antenna. The new coordinates of the range vector r(Rs,Re,Rz) are therefore defined by  
97 1 LANVIN, Jean-baptiste
98 22 DE GENDRE, Raphaëlle
<pre>
99 22 DE GENDRE, Raphaëlle
100 21 DE GENDRE, Raphaëlle
rS = sin φ cos θ rx + sin φ sin θ ry - cos φ rz
101 21 DE GENDRE, Raphaëlle
102 21 DE GENDRE, Raphaëlle
rE = -sin θ rx + cos θ ry
103 1 LANVIN, Jean-baptiste
104 1 LANVIN, Jean-baptiste
rZ = cos φ cos θ rx + cos φ sin θ ry + sin φ rz
105 1 LANVIN, Jean-baptiste
106 22 DE GENDRE, Raphaëlle
</pre>
107 1 LANVIN, Jean-baptiste
108 22 DE GENDRE, Raphaëlle
The range to the satellite is defined by:
109 1 LANVIN, Jean-baptiste
110 22 DE GENDRE, Raphaëlle
<pre>
111 22 DE GENDRE, Raphaëlle
r = √ [rS2 + rE2 + rZ2]
112 22 DE GENDRE, Raphaëlle
</pre>
113 21 DE GENDRE, Raphaëlle
114 22 DE GENDRE, Raphaëlle
The elevation and the azimuth are then given by
115 1 LANVIN, Jean-baptiste
116 22 DE GENDRE, Raphaëlle
<pre>
117 22 DE GENDRE, Raphaëlle
El = arcsin(rZ / r)
118 21 DE GENDRE, Raphaëlle
119 22 DE GENDRE, Raphaëlle
Az = arctan(-rE / rS)
120 22 DE GENDRE, Raphaëlle
</pre>
121 21 DE GENDRE, Raphaëlle
122 17 DE GENDRE, Raphaëlle
123 22 DE GENDRE, Raphaëlle
The minus in the azimuth comes from the definition of the azimuth
124 12 LANVIN, Jean-baptiste
h2. Link budget