Wiki » History » Version 37

LANVIN, Jean-baptiste, 12/14/2015 11:48 PM

1 22 DE GENDRE, Raphaëlle
2 13 LANVIN, Jean-baptiste
[[Introduction]]
3 22 DE GENDRE, Raphaëlle
4 37 LANVIN, Jean-baptiste
{{toc}}
5 37 LANVIN, Jean-baptiste
6 2 LANVIN, Jean-baptiste
[[State of Art of the Orbit Propagators]]
7 37 LANVIN, Jean-baptiste
8 37 LANVIN, Jean-baptiste
{{toc}}
9 37 LANVIN, Jean-baptiste
10 14 LANVIN, Jean-baptiste
[[The Two-Lines Element]]
11 2 LANVIN, Jean-baptiste
12 37 LANVIN, Jean-baptiste
{{toc}}
13 37 LANVIN, Jean-baptiste
14 37 LANVIN, Jean-baptiste
[[Distance Elevation and Azimuth Calculation]]
15 37 LANVIN, Jean-baptiste
16 37 LANVIN, Jean-baptiste
{{toc}}
17 2 LANVIN, Jean-baptiste
18 4 DE GENDRE, Raphaëlle
h2.  Distance elevation and azimuth calculation
19 4 DE GENDRE, Raphaëlle
20 4 DE GENDRE, Raphaëlle
21 4 DE GENDRE, Raphaëlle
22 4 DE GENDRE, Raphaëlle
23 4 DE GENDRE, Raphaëlle
h3.    ECI coordinates
24 4 DE GENDRE, Raphaëlle
25 4 DE GENDRE, Raphaëlle
26 4 DE GENDRE, Raphaëlle
27 4 DE GENDRE, Raphaëlle
28 4 DE GENDRE, Raphaëlle
29 4 DE GENDRE, Raphaëlle
The coordinates of the satellite given by the propagator are given in the Earth-Centered Inertial (ECI) coordinate system . This system is a cartesian coordinate system whose origin is located at the center of the earth (at the center of mass to be precise). The z axis is orthogonal to the equatorial plane pointing north, the x axis is pointing towards the vernal equinox, and the y axis is such that the system remains a direct orthogonal system The x and y axis are located in the equatorial plane as shown in the following figure.
30 4 DE GENDRE, Raphaëlle
31 4 DE GENDRE, Raphaëlle
32 4 DE GENDRE, Raphaëlle
!ECI.jpg!
33 5 DE GENDRE, Raphaëlle
34 4 DE GENDRE, Raphaëlle
This system is convenient to represent the positions and velocities of space objects rotating around the earth considering firstly that the origin of the system is the center of mass of the earth, and that the system does not rotate with the earth. Indeed, "inertial" means that the coordinate system is not accelerating, therefore not rotating: considering the way the three axis are defined, the system is fixed in space regarding the stars.
35 4 DE GENDRE, Raphaëlle
The problem here is that our ground is station is located on the surface of the earth, so its coordinates are given in the geodetic coordinate system, which is obviously a system that is rotating with the earth.
36 4 DE GENDRE, Raphaëlle
We had therefore two options: either calculate the coordinates of the ground station in the ECI coordinate system, or calculate the coordinates of the satellite in the geodetic coordinate system. We chose the first option .
37 1 LANVIN, Jean-baptiste
38 22 DE GENDRE, Raphaëlle
h3. θ(τ) calculation
39 12 LANVIN, Jean-baptiste
40 30 DE GENDRE, Raphaëlle
The main problem to go from the geodetic system to the ECI system is to calculate the angle between the ground station meridian (longitude) and the vernal equinox direction at the time of interest τ. This angle, also called the local sidereal time is a measure of time that depends on the stars, and not on the sun and that is why it is a bit touchy to calculate. For our implementation and tests, we relied on the algorithms and example given in the magazine _Satellite Times_ ,in the column Orbital Coordinate Systems, Part II. θ(τ) is actually defined as the sum between the ground station east longitude and the greenwich sidereal time GST, which is the angle between the greenwich meridian and the vernal equinox that we will note  θg(τ).
41 7 LANVIN, Jean-baptiste
θg(τ)can be calculated using the formula:
42 1 LANVIN, Jean-baptiste
43 16 DE GENDRE, Raphaëlle
<pre>
44 1 LANVIN, Jean-baptiste
θg(τ) = θg(0h) + ωe·Δτ (1)
45 16 DE GENDRE, Raphaëlle
</pre>
46 1 LANVIN, Jean-baptiste
47 1 LANVIN, Jean-baptiste
48 16 DE GENDRE, Raphaëlle
where Δτ is the number of seconds elapsed since 0h at the time of the calculation τ and ωe = 7.29211510 × 10-5 radians/second is the Earth's rotation rate. θg(0h) is the GST calculated at 0h that day and it is given as:
49 16 DE GENDRE, Raphaëlle
50 16 DE GENDRE, Raphaëlle
<pre>
51 1 LANVIN, Jean-baptiste
θg(0h) = 24110.54841 + 864018.812866 Tu + 0.093104 Tu2 - 6.2 × 10-6 Tu3 (2)
52 16 DE GENDRE, Raphaëlle
</pre>
53 16 DE GENDRE, Raphaëlle
54 8 LANVIN, Jean-baptiste
where Tu = du/36525 and du is the number of days of Universal Time elapsed since the julian date 2451545.0 (2000 January 1, 12h UT1). Therefore, to calculate θg(τ), the first thing we need is the julian date of the day, which we can deduce from the julian date of the year as follow:
55 1 LANVIN, Jean-baptiste
56 17 DE GENDRE, Raphaëlle
<pre>
57 22 DE GENDRE, Raphaëlle
JD = Julian_Date_of_Year() + Number of day since the first of January
58 17 DE GENDRE, Raphaëlle
</pre>
59 1 LANVIN, Jean-baptiste
60 17 DE GENDRE, Raphaëlle
61 8 LANVIN, Jean-baptiste
This calculation is done in the VI julian date.vi where the calculation of the Julian date of the year is done using the Meeus' approach.
62 1 LANVIN, Jean-baptiste
63 18 DE GENDRE, Raphaëlle
Once we had the Julian date, we could calculate du and therefore Tu, and that way we calculated θg(0h) using (2). From there, we were able to calculate θg(τ) using (1) and since we know the east longitude of the antenna, we obtained θ(τ) by a simple sum. Those calculations are done in the VI tetag.vi where θ(τ) is calculated in radians.
64 9 LANVIN, Jean-baptiste
65 9 LANVIN, Jean-baptiste
66 6 LANVIN, Jean-baptiste
67 6 LANVIN, Jean-baptiste
68 1 LANVIN, Jean-baptiste
69 12 LANVIN, Jean-baptiste
h3. Geodetic to ECI conversion
70 11 LANVIN, Jean-baptiste
71 1 LANVIN, Jean-baptiste
Once we had the local sidereal time, we were able to make the change of system using the following formulas:
72 11 LANVIN, Jean-baptiste
73 16 DE GENDRE, Raphaëlle
<pre>
74 11 LANVIN, Jean-baptiste
x=Rcos θ
75 1 LANVIN, Jean-baptiste
y=Rsin θ
76 11 LANVIN, Jean-baptiste
z=Re sin φ
77 16 DE GENDRE, Raphaëlle
</pre>
78 1 LANVIN, Jean-baptiste
79 1 LANVIN, Jean-baptiste
where Re = 6378.135 km, φ is the latitude of the antenna, θ is the local sidereal time and R = Re cos φ
80 18 DE GENDRE, Raphaëlle
Those calculations are done in the VI _Antenna coordinates ECI.vi_ and x,y,and z are in kilometers.
81 1 LANVIN, Jean-baptiste
82 1 LANVIN, Jean-baptiste
h3. Distance
83 16 DE GENDRE, Raphaëlle
84 30 DE GENDRE, Raphaëlle
Now that we had the coordinates of the ground station in the ECI coordinate system, and since the propagator gives us the coordinates of the satellite, the distance was pretty trivial to calculate. Indeed, as we said before, the ECI coordinate system is a cartesian system, and therefore the distance between two points A(x,y,z) and B(x',y',z') is defined by:
85 1 LANVIN, Jean-baptiste
86 17 DE GENDRE, Raphaëlle
<pre>
87 1 LANVIN, Jean-baptiste
d= sqrt((x-x')²+(y-y')²+(z-z')²)
88 17 DE GENDRE, Raphaëlle
</pre>
89 17 DE GENDRE, Raphaëlle
90 30 DE GENDRE, Raphaëlle
We used this formula to calculate the distance satellite to ground station in the VI distance.vi, which is very important to know for the link budget (for the free space loss) as we will see after.
91 1 LANVIN, Jean-baptiste
   
92 16 DE GENDRE, Raphaëlle
h3. Elevation and azimuth
93 18 DE GENDRE, Raphaëlle
94 27 DE GENDRE, Raphaëlle
 The elevation and the azimuth are very important to know as well in order to analyse the satellite link, because if the elevation is too low (below 10 degrees) 
95 27 DE GENDRE, Raphaëlle
it is not even worth calculating the link budget because the communication cannot be settled.
96 19 DE GENDRE, Raphaëlle
 The first step for this calculation is to calculate the range vector r, which is defined by:
97 1 LANVIN, Jean-baptiste
98 19 DE GENDRE, Raphaëlle
<pre>
99 27 DE GENDRE, Raphaëlle
 r = [rx, ry, rz] = [xs - xa, ys - ya, zs - za].
100 19 DE GENDRE, Raphaëlle
(xa,ya,za) being the antenna ECI coordinates and (xs,ys,zs) the satellite ECI coordinates
101 19 DE GENDRE, Raphaëlle
</pre>
102 19 DE GENDRE, Raphaëlle
103 21 DE GENDRE, Raphaëlle
But r is in the ECI coordinate system which is not adapted for the elevation and the azimuth calculation. Therefore, we had to make another change of coordinates from the ECI to the Topocentric-Horizon Coordinate System that is defined in the figure below. 
104 19 DE GENDRE, Raphaëlle
105 1 LANVIN, Jean-baptiste
!Topocentric-Horizon.jpg!
106 20 DE GENDRE, Raphaëlle
107 1 LANVIN, Jean-baptiste
In the figure, θ is the local sidereal time, and φ is the latitude of the antenna. The new coordinates of the range vector r(Rs,Re,Rz) are therefore defined by  
108 1 LANVIN, Jean-baptiste
109 22 DE GENDRE, Raphaëlle
<pre>
110 22 DE GENDRE, Raphaëlle
111 21 DE GENDRE, Raphaëlle
rS = sin φ cos θ rx + sin φ sin θ ry - cos φ rz
112 21 DE GENDRE, Raphaëlle
113 21 DE GENDRE, Raphaëlle
rE = -sin θ rx + cos θ ry
114 1 LANVIN, Jean-baptiste
115 1 LANVIN, Jean-baptiste
rZ = cos φ cos θ rx + cos φ sin θ ry + sin φ rz
116 1 LANVIN, Jean-baptiste
117 22 DE GENDRE, Raphaëlle
</pre>
118 1 LANVIN, Jean-baptiste
119 22 DE GENDRE, Raphaëlle
The range to the satellite is defined by:
120 1 LANVIN, Jean-baptiste
121 22 DE GENDRE, Raphaëlle
<pre>
122 22 DE GENDRE, Raphaëlle
r = √ [rS2 + rE2 + rZ2]
123 22 DE GENDRE, Raphaëlle
</pre>
124 21 DE GENDRE, Raphaëlle
125 22 DE GENDRE, Raphaëlle
The elevation and the azimuth are then given by
126 1 LANVIN, Jean-baptiste
127 22 DE GENDRE, Raphaëlle
<pre>
128 22 DE GENDRE, Raphaëlle
El = arcsin(rZ / r)
129 21 DE GENDRE, Raphaëlle
130 22 DE GENDRE, Raphaëlle
Az = arctan(-rE / rS)
131 21 DE GENDRE, Raphaëlle
</pre>
132 17 DE GENDRE, Raphaëlle
133 33 DE GENDRE, Raphaëlle
h3. Tests
134 33 DE GENDRE, Raphaëlle
135 33 DE GENDRE, Raphaëlle
In order to check the validity of our program we had to test each step of our calculation.
136 33 DE GENDRE, Raphaëlle
Considering that the local sidereal time is not a very familiar value, to test the calculation, we used the examples given in Satellite Times to compare our values. We first check the julian date of interest and then the value of θg(τ) and θ(τ).
137 33 DE GENDRE, Raphaëlle
Once that was ok, the distance was easier to test because we knew that we were supposed to find something around 850 km.
138 22 DE GENDRE, Raphaëlle
139 12 LANVIN, Jean-baptiste
h2. Link budget
140 25 DE GENDRE, Raphaëlle
141 25 DE GENDRE, Raphaëlle
142 25 DE GENDRE, Raphaëlle
143 1 LANVIN, Jean-baptiste
h3. Required C/N0 and C/N
144 25 DE GENDRE, Raphaëlle
145 25 DE GENDRE, Raphaëlle
146 27 DE GENDRE, Raphaëlle
 The first step in order to do a link budget is to determine the required Eb over N0 we need to achieve a given BER, for the modulation we are using.
147 27 DE GENDRE, Raphaëlle
 This value can be obtained by using theoretical curves as shown in the figure below.
148 1 LANVIN, Jean-baptiste
149 1 LANVIN, Jean-baptiste
!BER_curves.jpg!
150 1 LANVIN, Jean-baptiste
151 27 DE GENDRE, Raphaëlle
For our project, the wanted bit error rate was BER=10-4 and the modulations we considered were BPSK, QPSK and 2-FSK.
152 27 DE GENDRE, Raphaëlle
Therefore, we researched the theoretical value for these values at BER=10-4 and we implemented it in our code (in the VI _required Eb/N0.vi_). In our project, we haven't considered coding but if we had, we would have had to substract the required Eb/N0 by the coding gain.
153 1 LANVIN, Jean-baptiste
154 27 DE GENDRE, Raphaëlle
Once we had the required Eb/N0, we could calculate the required C/N0 (carrier to noise ratio) using the formula:
155 27 DE GENDRE, Raphaëlle
156 27 DE GENDRE, Raphaëlle
<pre>
157 27 DE GENDRE, Raphaëlle
158 27 DE GENDRE, Raphaëlle
C/N0=Eb/N0*Rb
159 27 DE GENDRE, Raphaëlle
160 27 DE GENDRE, Raphaëlle
</pre>
161 27 DE GENDRE, Raphaëlle
162 27 DE GENDRE, Raphaëlle
Rb being the information bit rate 
163 27 DE GENDRE, Raphaëlle
Knowing the bandwidth of the signal, the C/N can be calculated using:
164 27 DE GENDRE, Raphaëlle
165 27 DE GENDRE, Raphaëlle
<pre>
166 27 DE GENDRE, Raphaëlle
C/N=1/B*C/N0
167 27 DE GENDRE, Raphaëlle
</pre>
168 27 DE GENDRE, Raphaëlle
169 32 DE GENDRE, Raphaëlle
B being the bandwith of the noise but different definitions exist. Here we used the bandwidth of the RF carrier.
170 27 DE GENDRE, Raphaëlle
171 27 DE GENDRE, Raphaëlle
h3. C/N0 calculation
172 27 DE GENDRE, Raphaëlle
173 27 DE GENDRE, Raphaëlle
174 29 DE GENDRE, Raphaëlle
In the project, we only considered an AWGN channel (Additive White Gaussian Noise) and therefore we did not include interference in the link budget. So the formula we used to calculate the total C/N0 is:
175 29 DE GENDRE, Raphaëlle
176 29 DE GENDRE, Raphaëlle
177 29 DE GENDRE, Raphaëlle
<pre>
178 29 DE GENDRE, Raphaëlle
 (C/N0)t-1 = (C/N0)d-1  +(C/N0)u-1
179 1 LANVIN, Jean-baptiste
</pre>
180 1 LANVIN, Jean-baptiste
181 1 LANVIN, Jean-baptiste
where (C/N0)d and (C/N0)u are respectively the downlink and the uplink carrier to noise ratio.
182 1 LANVIN, Jean-baptiste
183 32 DE GENDRE, Raphaëlle
To calculate those ratios, the only loss we considered was the free space path loss and therefore we did not include the rain attenuation losses , the atmospheric gases attenuation or the depointing of the antenna. The formulas we used in C/N0d.vi and C/N0u.vi are:
184 30 DE GENDRE, Raphaëlle
185 30 DE GENDRE, Raphaëlle
<pre>
186 31 DE GENDRE, Raphaëlle
(C/N0)d_dBHz= EIRP_satellite + (G/T)ground -k -Lu_fspl;
187 30 DE GENDRE, Raphaëlle
188 31 DE GENDRE, Raphaëlle
(C/N0)u_dBHz= EIRP_ground + (G/T)satellite -k -Ld_fspl;
189 30 DE GENDRE, Raphaëlle
</pre>
190 30 DE GENDRE, Raphaëlle
191 30 DE GENDRE, Raphaëlle
where the EIRP is the Equivalent Isotropic Radiated Power (in dBW), which is the product of the transmitted gain Gt and the power transmitted to the input terminals of the antenna. We suppose here that the user of the program knows the EIRP of the antenna and of the satellite.
192 36 DE GENDRE, Raphaëlle
The G/T (in dBK-1) is called the "figure of merit" where G is the receive antenna gain (in dB) and T is the total system temperature (dBK). We suppose that the user knows as well the G/T of his ground station and of the satellite. If that is not the case, the user can refer to the book _Satellite communications system_ by Gerard Marat and Michel Bousquet to do the calculation or http://www.aticourses.com/sampler/sat_comm_sys_engineering.pdf.
193 1 LANVIN, Jean-baptiste
k is the boltzmann constant equal to -228.6 in dBJ.dBK-1.
194 36 DE GENDRE, Raphaëlle
Lu_fspl is the uplink free space path loss (in dB) and Ld_fspl the downlink free space loss (in dB as well) that can be defined as:
195 31 DE GENDRE, Raphaëlle
196 31 DE GENDRE, Raphaëlle
<pre>
197 31 DE GENDRE, Raphaëlle
Lu=10log((4*pi*d*Fu*/c)²);
198 31 DE GENDRE, Raphaëlle
Ld=10log((4*pi*d*Fd*/c)²);
199 31 DE GENDRE, Raphaëlle
</pre>
200 31 DE GENDRE, Raphaëlle
201 31 DE GENDRE, Raphaëlle
202 32 DE GENDRE, Raphaëlle
where Fu and Fd are respectively the uplink and the downlink frequencies and c the velocity of light in the vacuum. Those are calculated in the VI Free space path loss.vi.
203 34 DE GENDRE, Raphaëlle
204 34 DE GENDRE, Raphaëlle
205 34 DE GENDRE, Raphaëlle
h3. Tests
206 34 DE GENDRE, Raphaëlle
207 34 DE GENDRE, Raphaëlle
To test the link budget, we started with values of geostationnary satellites that are easier to find on the internet and on our lecture and we compared with our values.
208 35 DE GENDRE, Raphaëlle
209 35 DE GENDRE, Raphaëlle
h2. User guide
210 35 DE GENDRE, Raphaëlle
211 35 DE GENDRE, Raphaëlle
For our implementation, we tried to be as user friendly as we could. Indeed, we tried to give to all of our VIs relevant names so that if the user wants more details (or would like to modify) some of our calculation it would be easy to look through our labview project. We tried to make the same effort with our variable names in order to make them relevant and clear. The units of those variables are as well given when it is relevant. We can point out that most of our calculation for the link budget is done in dB and therefore the units are dBs as well (dBW, dBHz..)
212 35 DE GENDRE, Raphaëlle
213 35 DE GENDRE, Raphaëlle
h3. Configuration
214 1 LANVIN, Jean-baptiste
215 1 LANVIN, Jean-baptiste
The information the user needs to provide to our program in order to calculate the propagator and the link budget are:
216 36 DE GENDRE, Raphaëlle
217 36 DE GENDRE, Raphaëlle
- the latitude, the *east* longitude (in degrees) and the altitude (in km) of the ground station.
218 36 DE GENDRE, Raphaëlle
  Ex: if the ground station is located on the ground in Philadelphia: latitude= 40° , east longitude= -75°, altitude=0 km
219 36 DE GENDRE, Raphaëlle
- the EIRP of the ground station antenna (in dBW) and its G/T (in dBK-1)
220 36 DE GENDRE, Raphaëlle
- the latest TLE of the wanted satellite 
221 36 DE GENDRE, Raphaëlle
- the EIRP of the satellite antenna (in dBW) and its G/T (in dBK-1)
222 36 DE GENDRE, Raphaëlle
- the