Wiki » History » Version 38

LANVIN, Jean-baptiste, 12/14/2015 11:49 PM

1 22 DE GENDRE, Raphaëlle
2 13 LANVIN, Jean-baptiste
[[Introduction]]
3 22 DE GENDRE, Raphaëlle
4 37 LANVIN, Jean-baptiste
{{toc}}
5 37 LANVIN, Jean-baptiste
6 2 LANVIN, Jean-baptiste
[[State of Art of the Orbit Propagators]]
7 14 LANVIN, Jean-baptiste
[[The Two-Lines Element]]
8 37 LANVIN, Jean-baptiste
[[Distance Elevation and Azimuth Calculation]]
9 37 LANVIN, Jean-baptiste
10 2 LANVIN, Jean-baptiste
11 4 DE GENDRE, Raphaëlle
h2.  Distance elevation and azimuth calculation
12 4 DE GENDRE, Raphaëlle
13 4 DE GENDRE, Raphaëlle
14 4 DE GENDRE, Raphaëlle
15 4 DE GENDRE, Raphaëlle
16 4 DE GENDRE, Raphaëlle
h3.    ECI coordinates
17 4 DE GENDRE, Raphaëlle
18 4 DE GENDRE, Raphaëlle
19 4 DE GENDRE, Raphaëlle
20 4 DE GENDRE, Raphaëlle
21 4 DE GENDRE, Raphaëlle
22 4 DE GENDRE, Raphaëlle
The coordinates of the satellite given by the propagator are given in the Earth-Centered Inertial (ECI) coordinate system . This system is a cartesian coordinate system whose origin is located at the center of the earth (at the center of mass to be precise). The z axis is orthogonal to the equatorial plane pointing north, the x axis is pointing towards the vernal equinox, and the y axis is such that the system remains a direct orthogonal system The x and y axis are located in the equatorial plane as shown in the following figure.
23 4 DE GENDRE, Raphaëlle
24 4 DE GENDRE, Raphaëlle
25 4 DE GENDRE, Raphaëlle
!ECI.jpg!
26 5 DE GENDRE, Raphaëlle
27 4 DE GENDRE, Raphaëlle
This system is convenient to represent the positions and velocities of space objects rotating around the earth considering firstly that the origin of the system is the center of mass of the earth, and that the system does not rotate with the earth. Indeed, "inertial" means that the coordinate system is not accelerating, therefore not rotating: considering the way the three axis are defined, the system is fixed in space regarding the stars.
28 4 DE GENDRE, Raphaëlle
The problem here is that our ground is station is located on the surface of the earth, so its coordinates are given in the geodetic coordinate system, which is obviously a system that is rotating with the earth.
29 4 DE GENDRE, Raphaëlle
We had therefore two options: either calculate the coordinates of the ground station in the ECI coordinate system, or calculate the coordinates of the satellite in the geodetic coordinate system. We chose the first option .
30 1 LANVIN, Jean-baptiste
31 22 DE GENDRE, Raphaëlle
h3. θ(τ) calculation
32 12 LANVIN, Jean-baptiste
33 30 DE GENDRE, Raphaëlle
The main problem to go from the geodetic system to the ECI system is to calculate the angle between the ground station meridian (longitude) and the vernal equinox direction at the time of interest τ. This angle, also called the local sidereal time is a measure of time that depends on the stars, and not on the sun and that is why it is a bit touchy to calculate. For our implementation and tests, we relied on the algorithms and example given in the magazine _Satellite Times_ ,in the column Orbital Coordinate Systems, Part II. θ(τ) is actually defined as the sum between the ground station east longitude and the greenwich sidereal time GST, which is the angle between the greenwich meridian and the vernal equinox that we will note  θg(τ).
34 7 LANVIN, Jean-baptiste
θg(τ)can be calculated using the formula:
35 1 LANVIN, Jean-baptiste
36 16 DE GENDRE, Raphaëlle
<pre>
37 1 LANVIN, Jean-baptiste
θg(τ) = θg(0h) + ωe·Δτ (1)
38 16 DE GENDRE, Raphaëlle
</pre>
39 1 LANVIN, Jean-baptiste
40 1 LANVIN, Jean-baptiste
41 16 DE GENDRE, Raphaëlle
where Δτ is the number of seconds elapsed since 0h at the time of the calculation τ and ωe = 7.29211510 × 10-5 radians/second is the Earth's rotation rate. θg(0h) is the GST calculated at 0h that day and it is given as:
42 16 DE GENDRE, Raphaëlle
43 16 DE GENDRE, Raphaëlle
<pre>
44 1 LANVIN, Jean-baptiste
θg(0h) = 24110.54841 + 864018.812866 Tu + 0.093104 Tu2 - 6.2 × 10-6 Tu3 (2)
45 16 DE GENDRE, Raphaëlle
</pre>
46 16 DE GENDRE, Raphaëlle
47 8 LANVIN, Jean-baptiste
where Tu = du/36525 and du is the number of days of Universal Time elapsed since the julian date 2451545.0 (2000 January 1, 12h UT1). Therefore, to calculate θg(τ), the first thing we need is the julian date of the day, which we can deduce from the julian date of the year as follow:
48 1 LANVIN, Jean-baptiste
49 17 DE GENDRE, Raphaëlle
<pre>
50 22 DE GENDRE, Raphaëlle
JD = Julian_Date_of_Year() + Number of day since the first of January
51 17 DE GENDRE, Raphaëlle
</pre>
52 1 LANVIN, Jean-baptiste
53 17 DE GENDRE, Raphaëlle
54 8 LANVIN, Jean-baptiste
This calculation is done in the VI julian date.vi where the calculation of the Julian date of the year is done using the Meeus' approach.
55 1 LANVIN, Jean-baptiste
56 18 DE GENDRE, Raphaëlle
Once we had the Julian date, we could calculate du and therefore Tu, and that way we calculated θg(0h) using (2). From there, we were able to calculate θg(τ) using (1) and since we know the east longitude of the antenna, we obtained θ(τ) by a simple sum. Those calculations are done in the VI tetag.vi where θ(τ) is calculated in radians.
57 9 LANVIN, Jean-baptiste
58 9 LANVIN, Jean-baptiste
59 6 LANVIN, Jean-baptiste
60 6 LANVIN, Jean-baptiste
61 1 LANVIN, Jean-baptiste
62 12 LANVIN, Jean-baptiste
h3. Geodetic to ECI conversion
63 11 LANVIN, Jean-baptiste
64 1 LANVIN, Jean-baptiste
Once we had the local sidereal time, we were able to make the change of system using the following formulas:
65 11 LANVIN, Jean-baptiste
66 16 DE GENDRE, Raphaëlle
<pre>
67 11 LANVIN, Jean-baptiste
x=Rcos θ
68 1 LANVIN, Jean-baptiste
y=Rsin θ
69 11 LANVIN, Jean-baptiste
z=Re sin φ
70 16 DE GENDRE, Raphaëlle
</pre>
71 1 LANVIN, Jean-baptiste
72 1 LANVIN, Jean-baptiste
where Re = 6378.135 km, φ is the latitude of the antenna, θ is the local sidereal time and R = Re cos φ
73 18 DE GENDRE, Raphaëlle
Those calculations are done in the VI _Antenna coordinates ECI.vi_ and x,y,and z are in kilometers.
74 1 LANVIN, Jean-baptiste
75 1 LANVIN, Jean-baptiste
h3. Distance
76 16 DE GENDRE, Raphaëlle
77 30 DE GENDRE, Raphaëlle
Now that we had the coordinates of the ground station in the ECI coordinate system, and since the propagator gives us the coordinates of the satellite, the distance was pretty trivial to calculate. Indeed, as we said before, the ECI coordinate system is a cartesian system, and therefore the distance between two points A(x,y,z) and B(x',y',z') is defined by:
78 1 LANVIN, Jean-baptiste
79 17 DE GENDRE, Raphaëlle
<pre>
80 1 LANVIN, Jean-baptiste
d= sqrt((x-x')²+(y-y')²+(z-z')²)
81 17 DE GENDRE, Raphaëlle
</pre>
82 17 DE GENDRE, Raphaëlle
83 30 DE GENDRE, Raphaëlle
We used this formula to calculate the distance satellite to ground station in the VI distance.vi, which is very important to know for the link budget (for the free space loss) as we will see after.
84 1 LANVIN, Jean-baptiste
   
85 16 DE GENDRE, Raphaëlle
h3. Elevation and azimuth
86 18 DE GENDRE, Raphaëlle
87 27 DE GENDRE, Raphaëlle
 The elevation and the azimuth are very important to know as well in order to analyse the satellite link, because if the elevation is too low (below 10 degrees) 
88 27 DE GENDRE, Raphaëlle
it is not even worth calculating the link budget because the communication cannot be settled.
89 19 DE GENDRE, Raphaëlle
 The first step for this calculation is to calculate the range vector r, which is defined by:
90 1 LANVIN, Jean-baptiste
91 19 DE GENDRE, Raphaëlle
<pre>
92 27 DE GENDRE, Raphaëlle
 r = [rx, ry, rz] = [xs - xa, ys - ya, zs - za].
93 19 DE GENDRE, Raphaëlle
(xa,ya,za) being the antenna ECI coordinates and (xs,ys,zs) the satellite ECI coordinates
94 19 DE GENDRE, Raphaëlle
</pre>
95 19 DE GENDRE, Raphaëlle
96 21 DE GENDRE, Raphaëlle
But r is in the ECI coordinate system which is not adapted for the elevation and the azimuth calculation. Therefore, we had to make another change of coordinates from the ECI to the Topocentric-Horizon Coordinate System that is defined in the figure below. 
97 19 DE GENDRE, Raphaëlle
98 1 LANVIN, Jean-baptiste
!Topocentric-Horizon.jpg!
99 20 DE GENDRE, Raphaëlle
100 1 LANVIN, Jean-baptiste
In the figure, θ is the local sidereal time, and φ is the latitude of the antenna. The new coordinates of the range vector r(Rs,Re,Rz) are therefore defined by  
101 1 LANVIN, Jean-baptiste
102 22 DE GENDRE, Raphaëlle
<pre>
103 22 DE GENDRE, Raphaëlle
104 21 DE GENDRE, Raphaëlle
rS = sin φ cos θ rx + sin φ sin θ ry - cos φ rz
105 21 DE GENDRE, Raphaëlle
106 21 DE GENDRE, Raphaëlle
rE = -sin θ rx + cos θ ry
107 1 LANVIN, Jean-baptiste
108 1 LANVIN, Jean-baptiste
rZ = cos φ cos θ rx + cos φ sin θ ry + sin φ rz
109 1 LANVIN, Jean-baptiste
110 22 DE GENDRE, Raphaëlle
</pre>
111 1 LANVIN, Jean-baptiste
112 22 DE GENDRE, Raphaëlle
The range to the satellite is defined by:
113 1 LANVIN, Jean-baptiste
114 22 DE GENDRE, Raphaëlle
<pre>
115 22 DE GENDRE, Raphaëlle
r = √ [rS2 + rE2 + rZ2]
116 22 DE GENDRE, Raphaëlle
</pre>
117 21 DE GENDRE, Raphaëlle
118 22 DE GENDRE, Raphaëlle
The elevation and the azimuth are then given by
119 1 LANVIN, Jean-baptiste
120 22 DE GENDRE, Raphaëlle
<pre>
121 22 DE GENDRE, Raphaëlle
El = arcsin(rZ / r)
122 21 DE GENDRE, Raphaëlle
123 22 DE GENDRE, Raphaëlle
Az = arctan(-rE / rS)
124 21 DE GENDRE, Raphaëlle
</pre>
125 17 DE GENDRE, Raphaëlle
126 33 DE GENDRE, Raphaëlle
h3. Tests
127 33 DE GENDRE, Raphaëlle
128 33 DE GENDRE, Raphaëlle
In order to check the validity of our program we had to test each step of our calculation.
129 33 DE GENDRE, Raphaëlle
Considering that the local sidereal time is not a very familiar value, to test the calculation, we used the examples given in Satellite Times to compare our values. We first check the julian date of interest and then the value of θg(τ) and θ(τ).
130 33 DE GENDRE, Raphaëlle
Once that was ok, the distance was easier to test because we knew that we were supposed to find something around 850 km.
131 22 DE GENDRE, Raphaëlle
132 12 LANVIN, Jean-baptiste
h2. Link budget
133 25 DE GENDRE, Raphaëlle
134 25 DE GENDRE, Raphaëlle
135 25 DE GENDRE, Raphaëlle
136 1 LANVIN, Jean-baptiste
h3. Required C/N0 and C/N
137 25 DE GENDRE, Raphaëlle
138 25 DE GENDRE, Raphaëlle
139 27 DE GENDRE, Raphaëlle
 The first step in order to do a link budget is to determine the required Eb over N0 we need to achieve a given BER, for the modulation we are using.
140 27 DE GENDRE, Raphaëlle
 This value can be obtained by using theoretical curves as shown in the figure below.
141 1 LANVIN, Jean-baptiste
142 1 LANVIN, Jean-baptiste
!BER_curves.jpg!
143 1 LANVIN, Jean-baptiste
144 27 DE GENDRE, Raphaëlle
For our project, the wanted bit error rate was BER=10-4 and the modulations we considered were BPSK, QPSK and 2-FSK.
145 27 DE GENDRE, Raphaëlle
Therefore, we researched the theoretical value for these values at BER=10-4 and we implemented it in our code (in the VI _required Eb/N0.vi_). In our project, we haven't considered coding but if we had, we would have had to substract the required Eb/N0 by the coding gain.
146 1 LANVIN, Jean-baptiste
147 27 DE GENDRE, Raphaëlle
Once we had the required Eb/N0, we could calculate the required C/N0 (carrier to noise ratio) using the formula:
148 27 DE GENDRE, Raphaëlle
149 27 DE GENDRE, Raphaëlle
<pre>
150 27 DE GENDRE, Raphaëlle
151 27 DE GENDRE, Raphaëlle
C/N0=Eb/N0*Rb
152 27 DE GENDRE, Raphaëlle
153 27 DE GENDRE, Raphaëlle
</pre>
154 27 DE GENDRE, Raphaëlle
155 27 DE GENDRE, Raphaëlle
Rb being the information bit rate 
156 27 DE GENDRE, Raphaëlle
Knowing the bandwidth of the signal, the C/N can be calculated using:
157 27 DE GENDRE, Raphaëlle
158 27 DE GENDRE, Raphaëlle
<pre>
159 27 DE GENDRE, Raphaëlle
C/N=1/B*C/N0
160 27 DE GENDRE, Raphaëlle
</pre>
161 27 DE GENDRE, Raphaëlle
162 32 DE GENDRE, Raphaëlle
B being the bandwith of the noise but different definitions exist. Here we used the bandwidth of the RF carrier.
163 27 DE GENDRE, Raphaëlle
164 27 DE GENDRE, Raphaëlle
h3. C/N0 calculation
165 27 DE GENDRE, Raphaëlle
166 27 DE GENDRE, Raphaëlle
167 29 DE GENDRE, Raphaëlle
In the project, we only considered an AWGN channel (Additive White Gaussian Noise) and therefore we did not include interference in the link budget. So the formula we used to calculate the total C/N0 is:
168 29 DE GENDRE, Raphaëlle
169 29 DE GENDRE, Raphaëlle
170 29 DE GENDRE, Raphaëlle
<pre>
171 29 DE GENDRE, Raphaëlle
 (C/N0)t-1 = (C/N0)d-1  +(C/N0)u-1
172 1 LANVIN, Jean-baptiste
</pre>
173 1 LANVIN, Jean-baptiste
174 1 LANVIN, Jean-baptiste
where (C/N0)d and (C/N0)u are respectively the downlink and the uplink carrier to noise ratio.
175 1 LANVIN, Jean-baptiste
176 32 DE GENDRE, Raphaëlle
To calculate those ratios, the only loss we considered was the free space path loss and therefore we did not include the rain attenuation losses , the atmospheric gases attenuation or the depointing of the antenna. The formulas we used in C/N0d.vi and C/N0u.vi are:
177 30 DE GENDRE, Raphaëlle
178 30 DE GENDRE, Raphaëlle
<pre>
179 31 DE GENDRE, Raphaëlle
(C/N0)d_dBHz= EIRP_satellite + (G/T)ground -k -Lu_fspl;
180 30 DE GENDRE, Raphaëlle
181 31 DE GENDRE, Raphaëlle
(C/N0)u_dBHz= EIRP_ground + (G/T)satellite -k -Ld_fspl;
182 30 DE GENDRE, Raphaëlle
</pre>
183 30 DE GENDRE, Raphaëlle
184 30 DE GENDRE, Raphaëlle
where the EIRP is the Equivalent Isotropic Radiated Power (in dBW), which is the product of the transmitted gain Gt and the power transmitted to the input terminals of the antenna. We suppose here that the user of the program knows the EIRP of the antenna and of the satellite.
185 36 DE GENDRE, Raphaëlle
The G/T (in dBK-1) is called the "figure of merit" where G is the receive antenna gain (in dB) and T is the total system temperature (dBK). We suppose that the user knows as well the G/T of his ground station and of the satellite. If that is not the case, the user can refer to the book _Satellite communications system_ by Gerard Marat and Michel Bousquet to do the calculation or http://www.aticourses.com/sampler/sat_comm_sys_engineering.pdf.
186 1 LANVIN, Jean-baptiste
k is the boltzmann constant equal to -228.6 in dBJ.dBK-1.
187 36 DE GENDRE, Raphaëlle
Lu_fspl is the uplink free space path loss (in dB) and Ld_fspl the downlink free space loss (in dB as well) that can be defined as:
188 31 DE GENDRE, Raphaëlle
189 31 DE GENDRE, Raphaëlle
<pre>
190 31 DE GENDRE, Raphaëlle
Lu=10log((4*pi*d*Fu*/c)²);
191 31 DE GENDRE, Raphaëlle
Ld=10log((4*pi*d*Fd*/c)²);
192 31 DE GENDRE, Raphaëlle
</pre>
193 31 DE GENDRE, Raphaëlle
194 31 DE GENDRE, Raphaëlle
195 32 DE GENDRE, Raphaëlle
where Fu and Fd are respectively the uplink and the downlink frequencies and c the velocity of light in the vacuum. Those are calculated in the VI Free space path loss.vi.
196 34 DE GENDRE, Raphaëlle
197 34 DE GENDRE, Raphaëlle
198 34 DE GENDRE, Raphaëlle
h3. Tests
199 34 DE GENDRE, Raphaëlle
200 34 DE GENDRE, Raphaëlle
To test the link budget, we started with values of geostationnary satellites that are easier to find on the internet and on our lecture and we compared with our values.
201 35 DE GENDRE, Raphaëlle
202 35 DE GENDRE, Raphaëlle
h2. User guide
203 35 DE GENDRE, Raphaëlle
204 35 DE GENDRE, Raphaëlle
For our implementation, we tried to be as user friendly as we could. Indeed, we tried to give to all of our VIs relevant names so that if the user wants more details (or would like to modify) some of our calculation it would be easy to look through our labview project. We tried to make the same effort with our variable names in order to make them relevant and clear. The units of those variables are as well given when it is relevant. We can point out that most of our calculation for the link budget is done in dB and therefore the units are dBs as well (dBW, dBHz..)
205 35 DE GENDRE, Raphaëlle
206 35 DE GENDRE, Raphaëlle
h3. Configuration
207 1 LANVIN, Jean-baptiste
208 1 LANVIN, Jean-baptiste
The information the user needs to provide to our program in order to calculate the propagator and the link budget are:
209 36 DE GENDRE, Raphaëlle
210 36 DE GENDRE, Raphaëlle
- the latitude, the *east* longitude (in degrees) and the altitude (in km) of the ground station.
211 36 DE GENDRE, Raphaëlle
  Ex: if the ground station is located on the ground in Philadelphia: latitude= 40° , east longitude= -75°, altitude=0 km
212 36 DE GENDRE, Raphaëlle
- the EIRP of the ground station antenna (in dBW) and its G/T (in dBK-1)
213 36 DE GENDRE, Raphaëlle
- the latest TLE of the wanted satellite 
214 36 DE GENDRE, Raphaëlle
- the EIRP of the satellite antenna (in dBW) and its G/T (in dBK-1)
215 36 DE GENDRE, Raphaëlle
- the