Reed-Solomon Implementation - Decoding » History » Version 2
ABDALLAH, Hussein, 03/16/2016 10:55 PM
1 | 1 | ABDALLAH, Hussein | h1. Reed-Solomon Implementation - Decoding |
---|---|---|---|
2 | 1 | ABDALLAH, Hussein | |
3 | 1 | ABDALLAH, Hussein | Decoding of a RS codes is similar to the decoding of a BCH codes as there are considered as a special class of non binary BCH codes. |
4 | 1 | ABDALLAH, Hussein | |
5 | 1 | ABDALLAH, Hussein | c(x)=c0+c1(x)+c2(x2)+.. ck-1(xk-1) |
6 | 1 | ABDALLAH, Hussein | r(x)=r0+r1(x)+ r2(x2)+.. rk-1(xk-1) |
7 | 1 | ABDALLAH, Hussein | |
8 | 1 | ABDALLAH, Hussein | error polynomial |
9 | 1 | ABDALLAH, Hussein | e(x)=c(x)-r(x)= e0+e1(x)+ e2(x2)+.. ek-1(xk-1) |
10 | 1 | ABDALLAH, Hussein | |
11 | 1 | ABDALLAH, Hussein | In decoding, we need to determine error location and values. |
12 | 1 | ABDALLAH, Hussein | The example below shows how to proceed |
13 | 1 | ABDALLAH, Hussein | |
14 | 1 | ABDALLAH, Hussein | Let’s consider e(x) has 3 errors at the locations x1, x2, x3 |
15 | 1 | ABDALLAH, Hussein | The error location numbers are z= α1 z2=α2 z3 =α3 |
16 | 1 | ABDALLAH, Hussein | And the error values are e1, e2, e3 |
17 | 1 | ABDALLAH, Hussein | Another important point is about erasures. So if there are p erasure symbols and q errors in the received data r(x), then RS decoder is able to decode and correct if 2q+p<= d-1=n-k |
18 | 1 | ABDALLAH, Hussein | And then the received polynomial is r(x) = c(x) + e(x) + e*(x) = c(x) + u(x) |
19 | 1 | ABDALLAH, Hussein | With e(x) and e*(x) represent the error and the erasure polynomial. |
20 | 1 | ABDALLAH, Hussein | |
21 | 1 | ABDALLAH, Hussein | *Syndrome Computation* |
22 | 1 | ABDALLAH, Hussein | Received data |
23 | 1 | ABDALLAH, Hussein | r(x)=r0+r1(x)+ r2(x2)+.. rn-1(xn-1) |
24 | 1 | ABDALLAH, Hussein | Generator polynomial |
25 | 1 | ABDALLAH, Hussein | g(x) = (x+α)+ (x+α2)+ (x+α3)+..+ (x+α2t), so α, α2,..α2t are the roots |
26 | 1 | ABDALLAH, Hussein | c(αi)= m(αi) g(αi) where i= 1,2…2t |
27 | 1 | ABDALLAH, Hussein | and r(αi) = c(αi)+ e(αi) |
28 | 1 | ABDALLAH, Hussein | The syndrome Si = r(αi) |
29 | 1 | ABDALLAH, Hussein | The syndrome can be obtained by this way |
30 | 1 | ABDALLAH, Hussein | r(x) = a(x)(x +αi) + bi |
31 | 1 | ABDALLAH, Hussein | bi =GF(2m), and then Si= r(αi)= bi |
32 | 1 | ABDALLAH, Hussein | And the circuit is shown below |
33 | 2 | ABDALLAH, Hussein | |
34 | 2 | ABDALLAH, Hussein | !SyndromeRS.png! |