Reed-Solomon Implementation - Decoding » History » Version 6
ABDALLAH, Hussein, 03/18/2016 11:30 PM
1 | 1 | ABDALLAH, Hussein | h1. Reed-Solomon Implementation - Decoding |
---|---|---|---|
2 | 1 | ABDALLAH, Hussein | |
3 | 1 | ABDALLAH, Hussein | Decoding of a RS codes is similar to the decoding of a BCH codes as there are considered as a special class of non binary BCH codes. |
4 | 1 | ABDALLAH, Hussein | |
5 | 5 | ABDALLAH, Hussein | c(x) = c0 + c1(x) + c2(x^2) +.. ck-1(x^k-1) |
6 | 5 | ABDALLAH, Hussein | r(x) = r0 + r1(x) + r2(x^2) +.. rk-1(x^k-1) |
7 | 1 | ABDALLAH, Hussein | |
8 | 1 | ABDALLAH, Hussein | error polynomial |
9 | 5 | ABDALLAH, Hussein | e(x)=c(x)-r(x)= e0 + e1(x) + e2(x^2)+.. ek-1(x^k-1) |
10 | 1 | ABDALLAH, Hussein | |
11 | 1 | ABDALLAH, Hussein | In decoding, we need to determine error location and values. |
12 | 1 | ABDALLAH, Hussein | The example below shows how to proceed |
13 | 1 | ABDALLAH, Hussein | |
14 | 1 | ABDALLAH, Hussein | Let’s consider e(x) has 3 errors at the locations x1, x2, x3 |
15 | 6 | ABDALLAH, Hussein | The error location numbers are z = α1, z2 = α^2, z3 = α^3 |
16 | 1 | ABDALLAH, Hussein | And the error values are e1, e2, e3 |
17 | 1 | ABDALLAH, Hussein | Another important point is about erasures. So if there are p erasure symbols and q errors in the received data r(x), then RS decoder is able to decode and correct if 2q+p<= d-1=n-k |
18 | 1 | ABDALLAH, Hussein | And then the received polynomial is r(x) = c(x) + e(x) + e*(x) = c(x) + u(x) |
19 | 1 | ABDALLAH, Hussein | With e(x) and e*(x) represent the error and the erasure polynomial. |
20 | 1 | ABDALLAH, Hussein | |
21 | 1 | ABDALLAH, Hussein | *Syndrome Computation* |
22 | 1 | ABDALLAH, Hussein | Received data |
23 | 5 | ABDALLAH, Hussein | r(x)=r0 + r1(x) + r2(x^2)+.. rn-1(x^n-1) |
24 | 1 | ABDALLAH, Hussein | Generator polynomial |
25 | 5 | ABDALLAH, Hussein | g(x) = (x+α) + (x+α^2)+ (x+α^3)+..+ (x+α^2t), so α, α^2,..α^2t are the roots |
26 | 5 | ABDALLAH, Hussein | c(α^i)= m(α^i) * g(α^i) where i= 1,2…2t |
27 | 1 | ABDALLAH, Hussein | and r(αi) = c(αi)+ e(αi) |
28 | 5 | ABDALLAH, Hussein | The syndrome Si = r(α^i) |
29 | 1 | ABDALLAH, Hussein | The syndrome can be obtained by this way |
30 | 5 | ABDALLAH, Hussein | r(x) = a(x)(x +α^i) + bi |
31 | 5 | ABDALLAH, Hussein | bi =GF(2m), and then Si= r(α^i)= bi |
32 | 1 | ABDALLAH, Hussein | And the circuit is shown below |
33 | 2 | ABDALLAH, Hussein | |
34 | 2 | ABDALLAH, Hussein | !SyndromeRS.png! |
35 | 3 | ABDALLAH, Hussein | |
36 | 3 | ABDALLAH, Hussein | !Syndrome2RS.png! |
37 | 4 | ABDALLAH, Hussein | |
38 | 4 | ABDALLAH, Hussein | *References* |
39 | 4 | ABDALLAH, Hussein | |
40 | 4 | ABDALLAH, Hussein | http://cwww.ee.nctu.edu.tw/course/channel_coding/chap6.pdf |