Reed-Solomon Implementation - Decoding » History » Version 7

ABDALLAH, Hussein, 03/18/2016 11:31 PM

1 1 ABDALLAH, Hussein
h1. Reed-Solomon Implementation - Decoding
2 1 ABDALLAH, Hussein
3 1 ABDALLAH, Hussein
Decoding of a RS codes is similar to the decoding of a BCH codes as there are considered as a special class of non binary BCH codes.
4 1 ABDALLAH, Hussein
5 5 ABDALLAH, Hussein
c(x) = c0 + c1(x) + c2(x^2) +.. ck-1(x^k-1)
6 5 ABDALLAH, Hussein
r(x) = r0 + r1(x) + r2(x^2) +.. rk-1(x^k-1)
7 1 ABDALLAH, Hussein
8 1 ABDALLAH, Hussein
error polynomial 
9 5 ABDALLAH, Hussein
e(x)=c(x)-r(x)= e0 + e1(x) + e2(x^2)+.. ek-1(x^k-1)
10 1 ABDALLAH, Hussein
11 1 ABDALLAH, Hussein
In decoding, we need to determine error location and values.
12 1 ABDALLAH, Hussein
The example below shows how to proceed
13 1 ABDALLAH, Hussein
14 1 ABDALLAH, Hussein
Let’s consider e(x) has 3 errors at the locations x1, x2, x3
15 6 ABDALLAH, Hussein
The error location numbers are z = α1,  z2 = α^2,  z3 = α^3
16 1 ABDALLAH, Hussein
And the error values are e1, e2, e3
17 7 ABDALLAH, Hussein
Another important point is about erasures. So if there are p erasure symbols and q errors in the received data r(x), then RS decoder is able to decode and correct 
18 7 ABDALLAH, Hussein
if 2*q + p < = (d-1) = (n-k)
19 1 ABDALLAH, Hussein
And then the received polynomial is r(x) = c(x) + e(x) + e*(x) = c(x) + u(x)
20 1 ABDALLAH, Hussein
With e(x) and e*(x) represent the error and the erasure polynomial.
21 1 ABDALLAH, Hussein
22 1 ABDALLAH, Hussein
*Syndrome Computation*
23 1 ABDALLAH, Hussein
Received data
24 5 ABDALLAH, Hussein
r(x)=r0 + r1(x) + r2(x^2)+.. rn-1(x^n-1)
25 1 ABDALLAH, Hussein
Generator polynomial
26 5 ABDALLAH, Hussein
g(x) = (x+α) + (x+α^2)+ (x+α^3)+..+ (x+α^2t), so α, α^2,..α^2t are the roots
27 5 ABDALLAH, Hussein
c(α^i)= m(α^i) * g(α^i) where i= 1,2…2t
28 1 ABDALLAH, Hussein
and r(αi) = c(αi)+ e(αi)
29 5 ABDALLAH, Hussein
The syndrome Si = r(α^i)
30 1 ABDALLAH, Hussein
The syndrome can be obtained by this way
31 5 ABDALLAH, Hussein
r(x) = a(x)(x +α^i) + bi
32 5 ABDALLAH, Hussein
bi =GF(2m), and then Si= r(α^i)= bi
33 1 ABDALLAH, Hussein
And the circuit is shown below
34 2 ABDALLAH, Hussein
35 2 ABDALLAH, Hussein
!SyndromeRS.png!
36 3 ABDALLAH, Hussein
37 3 ABDALLAH, Hussein
!Syndrome2RS.png!
38 4 ABDALLAH, Hussein
39 4 ABDALLAH, Hussein
*References*
40 4 ABDALLAH, Hussein
41 4 ABDALLAH, Hussein
http://cwww.ee.nctu.edu.tw/course/channel_coding/chap6.pdf